Membrane curvature and mechanisms of dynamic cell membrane remodelling (original) (raw)
Rothman, J. E. & Orci, L. Budding vesicles in living cells. Scient. Am.274, 70–75 (1996). CAS Google Scholar
Sciaky, N. et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J. Cell Biol.139, 1137–1155 (1997). CASPubMedPubMed Central Google Scholar
Heuser, J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol.84, 560–583 (1980). CASPubMed Google Scholar
Bright, N. A., Gratian, M. J. & Luzio, J. P. Endocytic delivery to lysosomes mediated by concurrent fusion and kissing events in living cells. Curr. Biol.15, 360–365 (2005). CASPubMed Google Scholar
Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science175, 720–731 (1972). ADSCASPubMed Google Scholar
Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct.34, 351–378 (2005). CASPubMed Google Scholar
Stowell, M. H., Marks, B., Wigge, P. & McMahon, H. T. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nature Cell Biol.1, 27–32 (1999). CASPubMed Google Scholar
Baumgart, T., Hess, S. T. & Webb, W. W. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature425, 821–824 (2003). ADSCASPubMed Google Scholar
Bacia, K., Schwille, P. & Kurzchalia, T. Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl Acad. Sci. USA102, 3272–3277 (2005). ADSCASPubMedPubMed Central Google Scholar
Kooijman, E. E. et al. Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. Biochemistry44, 2097–2102 (2005). CASPubMed Google Scholar
Brown, W. J., Chambers, K. & Doody, A. Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic4, 214–221 (2003). CASPubMed Google Scholar
Shemesh, T., Luini, A., Malhotra, V., Burger, K. N. & Kozlov, M. M. Prefission constriction of Golgi tubular carriers driven by local lipid metabolism: a theoretical model. Biophys. J.85, 3813–3827 (2003). CASPubMedPubMed Central Google Scholar
Farge, E., Ojcius, D. M., Subtil, A. & Dautry-Varsat, A. Enhancement of endocytosis due to aminophospholipid transport across the plasma membrane of living cells. Am. J. Physiol.276, C725–C733 (1999). CASPubMed Google Scholar
Hua, Z. & Graham, T. R. Requirement for neo1p in retrograde transport from the Golgi complex to the endoplasmic reticulum. Mol. Biol. Cell14, 4971–4983 (2003). CASPubMedPubMed Central Google Scholar
Hammond, K., Reboiras, M. D., Lyle, I. G. & Jones, M. N. Characterisation of phosphatidylcholine/phosphatidylinositol sonicated vesicles. Effects of phospholipid composition on vesicle size. Biochim. Biophys. Acta774, 19–25 (1984). CASPubMed Google Scholar
Ford, M. G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science291, 1051–1055 (2001). ADSCASPubMed Google Scholar
Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature419, 361–366 (2002). ADSCASPubMed Google Scholar
Kinuta, M. et al. Phosphatidylinositol 4,5-bisphosphate stimulates vesicle formation from liposomes by brain cytosol. Proc. Natl Acad. Sci. USA99, 2842–2847 (2002). ADSCASPubMedPubMed Central Google Scholar
Wenk, M. R. & De Camilli, P. Protein–lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc. Natl Acad. Sci. USA101, 8262–8269 (2004). ADSCASPubMedPubMed Central Google Scholar
Honing, S. et al. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell18, 519–531 (2005). PubMed Google Scholar
Fernandez-Borja, M. et al. Multivesicular body morphogenesis requires phosphatidyl-inositol 3-kinase activity. Curr. Biol.9, 55–58 (1999). CASPubMed Google Scholar
Gruenberg, J. & Stenmark, H. The biogenesis of multivesicular endosomes. Nature Rev. Mol. Cell Biol.5, 317–323 (2004). CAS Google Scholar
Odorizzi, G., Babst, M. & Emr, S. D. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell95, 847–858 (1998). CASPubMed Google Scholar
Roux, A. et al. Role of curvature and phase transition in lipid sorting and fission of membrane tubules. EMBO J.24, 1537–1545 (2005). CASPubMedPubMed Central Google Scholar
Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell99, 179–188 (1999). CASPubMed Google Scholar
Fertuck, H. C. & Salpeter, M. M. Localization of acetylcholine receptor by 125I-labeled alpha-bungarotoxin binding at mouse motor endplates. Proc. Natl Acad. Sci. USA71, 1376–1378 (1974). ADSCASPubMedPubMed Central Google Scholar
Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4Å resolution. J. Mol. Biol.346, 967–989 (2005). CASPubMed Google Scholar
Mackinnon, R. Structural biology. Voltage sensor meets lipid membrane. Science306, 1304–1305 (2004). CASPubMed Google Scholar
Boudin, H. et al. Presynaptic clustering of mGluR7a requires the PICK1 PDZ domain binding site. Neuron28, 485–497 (2000). CASPubMed Google Scholar
Eckler, S. A., Kuehn, R. & Gautam, M. Deletion of N-terminal rapsyn domains disrupts clustering and has dominant negative effects on clustering of full-length rapsyn. Neuroscience131, 661–670 (2005). CASPubMed Google Scholar
Kirchhausen, T., Boll, W., van Oijen, A. & Ehrlich, M. Single-molecule live-cell imaging of clathrin-based endocytosis. Biochem. Soc. Symp.72, 71–76 (2005). CAS Google Scholar
Petrou, S. et al. Direct effects of fatty acids and other charged lipids on ion channel activity in smooth muscle cells. Prostaglandins Leukot. Essent. Fatty Acids52, 173–178 (1995). CASPubMed Google Scholar
Casado, M. & Ascher, P. Opposite modulation of NMDA receptors by lysophospholipids and arachidonic acid: common features with mechanosensitivity. J. Physiol.513, 317–330 (1998). CASPubMedPubMed Central Google Scholar
Fuster, D., Moe, O. W. & Hilgemann, D. W. Lipid- and mechanosensitivities of sodium/hydrogen exchangers analyzed by electrical methods. Proc. Natl Acad. Sci. USA101, 10482–10487 (2004). ADSCASPubMedPubMed Central Google Scholar
Ledesma, M. D. & Dotti, C. G. Membrane and cytoskeleton dynamics during axonal elongation and stabilization. Int. Rev. Cytol.227, 183–219 (2003). CASPubMed Google Scholar
Sheetz, M. P. Cell control by membrane-cytoskeleton adhesion. Nature Rev. Mol. Cell Biol.2, 392–396 (2001). CAS Google Scholar
Raucher, D. & Sheetz, M. P. Cell spreading and lamellipodial extension rate is regulated by membrane tension. J. Cell Biol.148, 127–136 (2000). CASPubMedPubMed Central Google Scholar
Dai, J., Ting-Beall, H. P. & Sheetz, M. P. The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells. J. Gen. Physiol.110, 1–10 (1997). CASPubMedPubMed Central Google Scholar
Heidelberger, R., Zhou, Z. Y. & Matthews, G. Multiple components of membrane retrieval in synaptic terminals revealed by changes in hydrostatic pressure. J. Neurophysiol.88, 2509–2517 (2002). PubMed Google Scholar
Raucher, D. & Sheetz, M. P. Membrane expansion increases endocytosis rate during mitosis. J. Cell Biol.144, 497–506 (1999). CASPubMedPubMed Central Google Scholar
Bettache, N. et al. Mechanical constraint imposed on plasma membrane through transverse phospholipid imbalance induces reversible actin polymerization via phosphoinositide 3-kinase activation. J. Cell Sci.116, 2277–2284 (2003). CASPubMed Google Scholar
Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell121, 593–606 (2005). CASPubMed Google Scholar
Yarar, D., Waterman-Storer, C. M. & Schmid, S. L. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol. Biol. Cell16, 964–975 (2005). CASPubMedPubMed Central Google Scholar
Shupliakov, O. et al. Impaired recycling of synaptic vesicles after acute perturbation of the presynaptic actin cytoskeleton. Proc. Natl Acad. Sci. USA99, 14476–14481 (2002). ADSCASPubMedPubMed Central Google Scholar
Engqvist-Goldstein, A. E. et al. RNAi-mediated Hip1R silencing results in stable association between the endocytic machinery and the actin assembly machinery. Mol. Biol. Cell15, 1666–1679 (2004). CASPubMedPubMed Central Google Scholar
Qualmann, B. & Kelly, R. B. Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J. Cell Biol.148, 1047–1062 (2000). CASPubMedPubMed Central Google Scholar
Rodriguez-Boulan, E., Kreitzer, G. & Musch, A. Organization of vesicular trafficking in epithelia. Nature Rev. Mol. Cell Biol.6, 233–247 (2005). CAS Google Scholar
Vale, R. D. & Hotani, H. Formation of membrane networks in vitro by kinesin-driven microtubule movement. J. Cell Biol.107, 2233–2241 (1988). CASPubMed Google Scholar
Dabora, S. L. & Sheetz, M. P. The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell54, 27–35 (1988). CASPubMed Google Scholar
Buss, F., Luzio, J. P. & Kendrick-Jones, J. Myosin VI, an actin motor for membrane traffic and cell migration. Traffic3, 851–858 (2002). CASPubMed Google Scholar
Bretscher, M. S. Getting membrane flow and the cytoskeleton to cooperate in moving cells. Cell87, 601–606 (1996). CASPubMed Google Scholar
Allan, V. & Vale, R. Movement of membrane tubules along microtubules in vitro: evidence for specialised sites of motor attachment. J. Cell Sci.107, 1885–1897 (1994). CASPubMed Google Scholar
Merrifield, C. J. Seeing is believing: imaging actin dynamics at single sites of endocytosis. Trends Cell Biol.14, 352–358 (2004). CASPubMed Google Scholar
Zakharenko, S. & Popov, S. Dynamics of axonal microtubules regulate the topology of new membrane insertion into the growing neurites. J. Cell Biol.143, 1077–1086 (1998). CASPubMedPubMed Central Google Scholar
Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science303, 495–499 (2004). ADSCASPubMed Google Scholar
Hinshaw, J. E. & Schmid, S. L. Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding. Nature374, 190–192 (1995). ADSCASPubMed Google Scholar
Marks, B. et al. GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature410, 231–235 (2001). ADSCASPubMed Google Scholar
Praefcke, G. J. & McMahon, H. T. The dynamin superfamily: universal membrane tubulation and fission molecules? Nature Rev. Mol. Cell Biol.5, 133–147 (2004). CAS Google Scholar
Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell93, 1021–1029 (1998). CASPubMed Google Scholar
von Schwedler, U. K. et al. The protein network of HIV budding. Cell114, 701–713 (2003). CASPubMed Google Scholar
Antonny, B., Gounon, P., Schekman, R. & Orci, L. Self-assembly of minimal COPII cages. EMBO Rep.4, 419–424 (2003). CASPubMedPubMed Central Google Scholar
Nossal, R. Energetics of clathrin basket assembly. Traffic2, 138–147 (2001). CASPubMed Google Scholar
Razani, B. & Lisanti, M. P. Caveolins and caveolae: molecular and functional relationships. Exp. Cell Res.271, 36–44 (2001). CASPubMed Google Scholar
Zimmerberg, J. & McLaughlin, S. Membrane curvature: how BAR domains bend bilayers. Curr. Biol.14, R250–R252 (2004). CASPubMed Google Scholar
Takei, K., Slepnev, V. I., Haucke, V. & De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nature Cell Biol.1, 33–39 (1999). CASPubMed Google Scholar
Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol.155, 193–200 (2001). CASPubMedPubMed Central Google Scholar
Razzaq, A. et al. Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev.15, 2967–2979 (2001). CASPubMedPubMed Central Google Scholar
Richnau, N., Fransson, A., Farsad, K. & Aspenstrom, P. RICH-1 has a BIN/Amphiphysin/Rvsp domain responsible for binding to membrane lipids and tubulation of liposomes. Biochem. Biophys. Res. Commun.320, 1034–1042 (2004). CASPubMed Google Scholar
Wigge, P. et al. Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol. Biol. Cell8, 2003–2015 (1997). CASPubMedPubMed Central Google Scholar
Carlton, J. et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr. Biol.14, 1791–1800 (2004). CASPubMed Google Scholar
Orcl, L., Palmer, D. J., Amherdt, M. & Rothman, J. E. Coated vesicle assembly in the Golgi requires only coatomer and ARF proteins from the cytosol. Nature364, 732–734 (1993). ADSCASPubMed Google Scholar
Seaman, M. N., Sowerby, P. J. & Robinson, M. S. Cytosolic and membrane-associated proteins involved in the recruitment of AP-1 adaptors onto the trans-Golgi network. J. Biol. Chem.271, 25446–25451 (1996). CASPubMed Google Scholar
Puertollano, R., Randazzo, P. A., Presley, J. F., Hartnell, L. M. & Bonifacino, J. S. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell105, 93–102 (2001). CASPubMed Google Scholar
Bi, X., Corpina, R. A. & Goldberg, J. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Nature419, 271–277 (2002). ADSCASPubMed Google Scholar
Mashl, R. J. & Bruinsma, R. F. Spontaneous-curvature theory of clathrin-coated membranes. Biophys. J.74, 2862–2875 (1998). ADSCASPubMedPubMed Central Google Scholar
Kozlov, M. M. Fission of biological membranes: interplay between dynamin and lipids. Traffic2, 51–65 (2001). CASPubMed Google Scholar
Bigay, J., Gounon, P., Robineau, S. & Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature426, 563–566 (2003). ADSCASPubMed Google Scholar
Bigay, J., Casella, J. F., Drin, G., Mesmin, B. & Antonny, B. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J.24, 2244–2253 (2005). CASPubMedPubMed Central Google Scholar
Antonny, B., Beraud-Dufour, S., Chardin, P. & Chabre, M. N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry36, 4675–4684 (1997). CASPubMed Google Scholar
Kobayashi, T. et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature392, 193–197 (1998). ADSCASPubMed Google Scholar
Matsuo, H. et al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science303, 531–534 (2004). ADSCASPubMed Google Scholar
Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT.-I. Cell106, 145–155 (2001). CASPubMed Google Scholar
Odorizzi, G., Katzmann, D. J., Babst, M., Audhya, A. & Emr, S. D. Bro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae. J. Cell Sci.116, 1893–1903 (2003). CASPubMed Google Scholar
Ward, D. M. et al. The role of LIP5 and CHMP5 in multivesicular body formation and HIV-1 budding in mammalian cells. J. Biol. Chem.280, 10548–10555 (2005). CASPubMed Google Scholar
Praefcke, G. J. et al. Evolving nature of the AP2 alpha-appendage hub during clathrin-coated vesicle endocytosis. EMBO J.23, 4371–4383 (2004). CASPubMedPubMed Central Google Scholar
Perry, M. M. & Gilbert, A. B. Yolk transport in the ovarian follicle of the hen (Gallus domesticus): lipoprotein-like particles at the periphery of the oocyte in the rapid growth phase. J. Cell Sci.39, 257–272 (1979). CASPubMed Google Scholar
Gallop, J. L. & McMahon, H. T. BAR domains and membrane curvature: bringing your curves to the BAR. Biochem. Soc. Symp.72, 223–231 (2005). CAS Google Scholar
Jao, C. C., Der-Sarkissian, A., Chen, J. & Langen, R. Structure of membrane-bound alpha-synuclein studied by site-directed spin labeling. Proc. Natl Acad. Sci. USA101, 8331–8336 (2004). ADSCASPubMedPubMed Central Google Scholar
Lee, S. et al. _De novo_-designed peptide transforms Golgi-specific lipids into Golgi-like nanotubules. J. Biol. Chem.276, 41224–41228 (2001). CASPubMed Google Scholar
Stahelin, R. V. et al. Contrasting membrane interaction mechanisms of AP180 N-terminal homology (ANTH) and epsin N-terminal homology (ENTH) domains. J. Biol. Chem.278, 28993–28999 (2003). CASPubMed Google Scholar