Restoring function in exhausted CD8 T cells during chronic viral infection (original) (raw)
References
Klenerman, P. & Hill, A. T cells and viral persistence: lessons from diverse infections. Nature Immunol.6, 873–879 (2005) ArticleCAS Google Scholar
Wherry, E. J., Barber, D. L., Kaech, S. M., Blattman, J. N. & Ahmed, R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc. Natl Acad. Sci. USA101, 16004–16009 (2004) ArticleCASADS Google Scholar
Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol.77, 4911–4927 (2003) ArticleCAS Google Scholar
Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med.188, 2205–2213 (1998) ArticleCAS Google Scholar
Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med.187, 1383–1393 (1998) ArticleCAS Google Scholar
Pantaleo, G. & Koup, R. A. Correlates of immune protection in HIV-1 infection: what we know, what we don't know, what we should know. Nature Med.10, 806–810 (2004) ArticleCAS Google Scholar
Letvin, N. L. & Walker, B. D. Immunopathogenesis and immunotherapy in AIDS virus infections. Nature Med.9, 861–866 (2003) ArticleCAS Google Scholar
Rehermann, B. & Nascimbeni, M. Immunology of hepatitis B virus and hepatitis C virus infection. Nature Rev. Immunol.5, 215–229 (2005) ArticleCAS Google Scholar
Matloubian, M., Kolhekar, S. R., Somasundaram, T. & Ahmed, R. Molecular determinants of macrophage tropism and viral persistence: importance of single amino acid changes in the polymerase and glycoprotein of lymphocytic choriomeningitis virus. J. Virol.67, 7340–7349 (1993) CASPubMedPubMed Central Google Scholar
Ishida, Y., Agata, Y., Shibahara, K. & Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J.11, 3887–3895 (1992) ArticleCAS Google Scholar
Nishimura, H., Nose, M., Hiai, H., Minato, N. & Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity11, 141–151 (1999) ArticleCAS Google Scholar
Sharpe, A. H. & Freeman, G. J. The B7–CD28 superfamily. Nature Rev. Immunol.2, 116–126 (2002) ArticleCAS Google Scholar
Chen, L. Co-inhibitory molecules of the B7–CD28 family in the control of T-cell immunity. Nature Rev. Immunol.4, 336–347 (2004) ArticleCAS Google Scholar
Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med.192, 1027–1034 (2000) ArticleCAS Google Scholar
Dong, H., Zhu, G., Tamada, K. & Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nature Med.5, 1365–1369 (1999) ArticleCAS Google Scholar
Matloubian, M., Concepcion, R. J. & Ahmed, R. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J. Virol.68, 8056–8063 (1994) CASPubMedPubMed Central Google Scholar
Bevan, M. J. Helping the CD8+ T-cell response. Nature Rev. Immunol.4, 595–602 (2004) ArticleCAS Google Scholar
Shin, T. et al. In vivo costimulatory role of B7-DC in tuning T helper cell 1 and cytotoxic T lymphocyte responses. J. Exp. Med.201, 1531–1541 (2005) ArticleCAS Google Scholar
Oflazoglu, E. et al. Paradoxical role of programmed death-1 ligand 2 in Th2 immune responses in vitro and in a mouse asthma model in vivo. Eur. J. Immunol.34, 3326–3336 (2004) ArticleCAS Google Scholar
Egen, J. G., Kuhns, M. S. & Allison, J. P. CTLA-4: new insights into its biological function and use in tumour immunotherapy. Nature Immunol.3, 611–618 (2002) ArticleCAS Google Scholar
Probst, H. C., McCoy, K., Okazaki, T., Honjo, T. & van den Broek, M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nature Immunol.6, 280–286 (2005) ArticleCAS Google Scholar
Tanchot, C. et al. Modifications of CD8+ T cell function during in vivo memory or tolerance induction. Immunity8, 581–590 (1998) ArticleCAS Google Scholar
Singh, N. J. & Schwartz, R. H. The strength of persistent antigenic stimulation modulates adaptive tolerance in peripheral CD4+ T cells. J. Exp. Med.198, 1107–1117 (2003) ArticleCAS Google Scholar
Iwai, Y., Terawaki, S., Ikegawa, M., Okazaki, T. & Honjo, T. PD-1 inhibits antiviral immunity at the effector phase in the liver. J. Exp. Med.198, 39–50 (2003) ArticleCAS Google Scholar
Isogawa, M., Furuichi, Y. & Chisari, F. V. Oscillating CD8+ T cell effector functions after antigen recognition in the liver. Immunity23, 53–63 (2005) ArticleCAS Google Scholar
Dudley, M. E. & Rosenberg, S. A. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nature Rev. Cancer3, 666–675 (2003) ArticleCAS Google Scholar
Autran, B., Carcelain, G., Combadiere, B. & Debre, P. Therapeutic vaccines for chronic infections. Science305, 205–208 (2004) ArticleCASADS Google Scholar
Wherry, E. J., Blattman, J. N. & Ahmed, R. Low CD8 T-cell proliferative potential and high viral load limit the effectiveness of therapeutic vaccination. J. Virol.79, 8960–8968 (2005) ArticleCAS Google Scholar
Rodig, N. et al. Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur. J. Immunol.33, 3117–3126 (2003) ArticleCAS Google Scholar
Kaech, S. M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell111, 837–851 (2002) ArticleCAS Google Scholar