Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide (original) (raw)
Liu, Y. J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol.23, 275–306 (2005) ArticleCASPubMed Google Scholar
Colonna, M., Trinchieri, G. & Liu, Y. J. Plasmacytoid dendritic cells in immunity. Nature Immunol.5, 1219–1226 (2004) ArticleCAS Google Scholar
Kadowaki, N. et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med.194, 863–869 (2001) ArticleCASPubMedPubMed Central Google Scholar
Latz, E. et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nature Immunol.5, 190–198 (2004) ArticleCAS Google Scholar
Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science303, 1529–1531 (2004) ArticleCASPubMedADS Google Scholar
Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature434, 772–777 (2005) ArticleCASPubMedADS Google Scholar
Honda, K. et al. Spatiotemporal regulation of MyD88–IRF-7 signalling for robust type-I interferon induction. Nature434, 1035–1040 (2005) ArticleCASPubMedADS Google Scholar
Krieg, A. M. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol.20, 709–760 (2002) ArticleCASPubMed Google Scholar
Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell124, 783–801 (2006) ArticleCASPubMed Google Scholar
Stacey, K. J. et al. The molecular basis for the lack of immunostimulatory activity of vertebrate DNA. J. Immunol.170, 3614–3620 (2003) ArticleCASPubMed Google Scholar
Barton, G. M., Kagan, J. C. & Medzhitov, R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nature Immunol.7, 49–56 (2006) ArticleCAS Google Scholar
Yasuda, K. et al. Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J. Immunol.174, 6129–6136 (2005) ArticleCASPubMed Google Scholar
Ronnblom, L., Eloranta, M. L. & Alm, G. V. Role of natural interferon-α producing cells (plasmacytoid dendritic cells) in autoimmunity. Autoimmunity36, 463–472 (2003) ArticlePubMedCAS Google Scholar
Barrat, F. J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med.202, 1131–1139 (2005) ArticleCASPubMedPubMed Central Google Scholar
Means, T. K. et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest.115, 407–417 (2005) ArticleCASPubMedPubMed Central Google Scholar
Theofilopoulos, A. N., Baccala, R., Beutler, B. & Kono, D. H. Type I interferons (α/β) in immunity and autoimmunity. Annu. Rev. Immunol.23, 307–336 (2005) ArticleCASPubMed Google Scholar
Blanco, P., Palucka, A. K., Gill, M., Pascual, V. & Banchereau, J. Induction of dendritic cell differentiation by IFN-α in systemic lupus erythematosus. Science294, 1540–1543 (2001) ArticleCASPubMedADS Google Scholar
Lowes, M. A., Bowcock, A. M. & Krueger, J. G. Pathogenesis and therapy of psoriasis. Nature445, 866–873 (2007) ArticleCASPubMedADS Google Scholar
Nickoloff, B. J. & Nestle, F. O. Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J. Clin. Invest.113, 1664–1675 (2004) ArticleCASPubMedPubMed Central Google Scholar
Nestle, F. O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-α production. J. Exp. Med.202, 135–143 (2005) ArticleCASPubMedPubMed Central Google Scholar
Kupper, T. S. & Fuhlbrigge, R. C. Immune surveillance in the skin: mechanisms and clinical consequences. Nature Rev. Immunol.4, 211–222 (2004) ArticleCAS Google Scholar
Harder, J. & Schroder, J. M. Psoriatic scales: a promising source for the isolation of human skin-derived antimicrobial proteins. J. Leukoc. Biol.77, 476–486 (2005) ArticleCASPubMed Google Scholar
Glaser, R. et al. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nature Immunol.6, 57–64 (2005) ArticleCAS Google Scholar
Zanetti, M. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukoc. Biol.75, 39–48 (2004) ArticlePubMedCAS Google Scholar
Braff, M. H., Bardan, A., Nizet, V. & Gallo, R. L. Cutaneous defense mechanisms by antimicrobial peptides. J. Invest. Dermatol.125, 9–13 (2005) ArticleCASPubMed Google Scholar
Ong, P. Y. et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med.347, 1151–1160 (2002) ArticleCASPubMed Google Scholar
Dufourcq, J., Neri, W. & Henry-Toulme, N. Molecular assembling of DNA with amphipathic peptides. FEBS Lett.421, 7–11 (1998) ArticleCASPubMed Google Scholar
Niidome, T., Wakamatsu, M., Wada, A., Hirayama, T. & Aoyagi, H. Required structure of cationic peptide for oligonucleotide-binding and -delivering into cells. J. Pept. Sci.6, 271–279 (2000) ArticleCASPubMed Google Scholar
Kubo, T. & Fujii, M. Specific binding and stabilization of DNA and phosphorothioate DNA by amphiphilic α-helical peptides. Nucleosides Nucleotides Nucleic Acids20, 1313–1316 (2001) ArticleCASPubMed Google Scholar
Sandgren, S. et al. The human antimicrobial peptide LL-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. J. Biol. Chem.279, 17951–17956 (2004) ArticleCASPubMed Google Scholar
Guiducci, C. et al. Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J. Exp. Med.203, 1999–2008 (2006) ArticleCASPubMedPubMed Central Google Scholar
Harder, J., Bartels, J., Christophers, E. & Schroder, J. M. A peptide antibiotic from human skin. Nature387, 861 (1997) ArticleCASPubMedADS Google Scholar
Dorschner, R. A. et al. Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus . J. Invest. Dermatol.117, 91–97 (2001) ArticleCASPubMed Google Scholar
Heilborn, J. D. et al. The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J. Invest. Dermatol.120, 379–389 (2003) ArticleCASPubMed Google Scholar
Frohm, M. et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J. Biol. Chem.272, 15258–15263 (1997) ArticleCASPubMed Google Scholar
Schauber, J. et al. Heterogeneous expression of human cathelicidin hCAP18/LL-37 in inflammatory bowel diseases. Eur. J. Gastroenterol. Hepatol.18, 615–621 (2006) ArticleCASPubMed Google Scholar
Paulsen, F. et al. Antimicrobial peptides are expressed and produced in healthy and inflamed human synovial membranes. J. Pathol.198, 369–377 (2002) ArticleCASPubMed Google Scholar
Li, X., de Leeuw, E. & Lu, W. Total chemical synthesis of human psoriasin by native chemical ligation. Biochemistry44, 14688–14694 (2005) ArticleCASPubMed Google Scholar
Zal, T., Zal, M. A., Lotz, C., Goergen, C. J. & Gascoigne, N. R. Spectral shift of fluorescent dye FM4-64 reveals distinct microenvironment of nuclear envelope in living cells. Traffic7, 1607–1613 (2006) ArticleCASPubMed Google Scholar