A chemical approach to stem-cell biology and regenerative medicine (original) (raw)
Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell122, 947–956 (2005). This paper reports a genome-wide location analysis of the genesOct4, Sox2andNanog, and proposes a model of core ES-cell regulatory circuitry for maintaining the pluripotent state of ES cells. ArticleCAS Google Scholar
Lee, T. I. et al. Control of developmental regulator's by polycomb in human embryonic stem cells. Cell125, 301–313 (2006). ArticleCAS Google Scholar
Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125, 315–326 (2006). ArticleCAS Google Scholar
Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature448, 553–560 (2007). ArticleCASADS Google Scholar
Scadden, D. T. The stem-cell niche as an entity of action. Nature441, 1075–1079 (2006). ArticleCASADS Google Scholar
Chen, S. B. et al. Self-renewal of embryonic stem cells by a small molecule. Proc. Natl Acad. Sci. USA103, 17266–17271 (2006). This paper describes the identification of a novel synthetic small molecule that can maintain long-term self-renewal of mouse ES cells in the absence of feeder cells, serum, LIF, BMPs and WNT proteins. ArticleCASADS Google Scholar
Ludwig, T. E. et al. Derivation of human embryonic stem cells in defined conditions. Nature Biotechnol.24, 185–187 (2006). ArticleCAS Google Scholar
Yao, S. et al. Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proc. Natl Acad. Sci. USA103, 6907–6912 (2006). ArticleCASADS Google Scholar
D'Amour, K. A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nature Biotechnol.24, 1392–1401 (2006). This paper elegantly describes a directed, stepwise differentiation of human ES cells into functional pancreatic hormone-expressing endocrine cells. ArticleCAS Google Scholar
Chen, S. B., Zhang, Q. S., Wu, X., Schultz, P. G. & Ding, S. Dedifferentiation of lineage-committed cells by a small molecule. J. Am. Chem. Soc.126, 410–411 (2004). ArticleCAS Google Scholar
Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006). This paper was the first to demonstrate that mouse somatic cells can be reprogrammed to become iPS cells by viral transduction of four defined factors: OCT4, SOX2, KLF4 and Myc. ArticleCAS Google Scholar
Ding, S. & Schultz, P. G. A role for chemistry in stem cell biology. Nature Biotechnol.22, 833–840 (2004). ArticleCAS Google Scholar
Keller, G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev.19, 1129–1155 (2005). ArticleCAS Google Scholar
Shamblott, M. J. et al. Derivation of pluripotent stem cells horn cultured human primordial germ cells. Proc. Natl Acad. Sci. USA95, 13726–13731 (1998). ArticleCASADS Google Scholar
Kanatsu-Shinohara, M. et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell119, 1001–1012 (2004). ArticleCAS Google Scholar
Guan, K. et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature440, 1199–1203 (2006). ArticleCASADS Google Scholar
Brons, I. G. M. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature448, 191–195 (2007). ArticleCASADS Google Scholar
Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature448, 196–199 (2007). References 17 and 18 report the derivation of pluripotent epiblast stem cells from post-implantation, epiblast-stage embryos of mice and rats. ArticleCASADS Google Scholar
Wu, H. et al. Integrative genomic and functional analyses reveal neuronal subtype differentiation bias in human embryonic stem cell lines. Proc. Natl Acad. Sci. USA104, 13821–13826 (2007). ArticleCASADS Google Scholar
Ying, Q. L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell115, 281–292 (2003). ArticleCAS Google Scholar
Vallier, L., Reynolds, D. & Pederson, R. A. Nodal inhibits differentiation of human embryonic stem cells along the neuroectodermal default pathway. Dev. Biol.275, 403–421 (2004). ArticleCAS Google Scholar
Xu, R. H. et al. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nature Methods2, 185–190 (2005). ArticleCAS Google Scholar
Beattie, G. M. et al. Activin A maintains pluripotency of human embryonic stem cells in the sbsence of feeder layers. Stem Cells23, 489–495 (2005). ArticleCAS Google Scholar
Lu, J., Hou, R., Booth, C. J., Yang, S.-H. & Snyder, M. Defined culture conditions of human embryonic stem cells. Proc. Natl Acad. Sci. USA103, 5688–5693 (2006). ArticleCASADS Google Scholar
Wang, L. et al. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood110, 4111–4119 (2007). ArticleCAS Google Scholar
Watanabe, K. et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnol.25, 681–686 (2007). ArticleCAS Google Scholar
Conti, L. et al. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PloS Biol.3, 1594–1606 (2005). ArticleCAS Google Scholar
Qyang, Y. et al. The renewal and differentiation of Isl1+ cardiovascular progenitors are controlled by a Wnt/β-catenin pathway. Cell Stem Cell1, 165–179 (2007). ArticleCAS Google Scholar
Moretti, A. et al. Multipotent embryonic Isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell127, 1151–1165 (2006). ArticleCAS Google Scholar
Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron28, 31–40 (2000). ArticleCAS Google Scholar
Perrier, A. L. et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl Acad. Sci. USA101, 12543–12548 (2004). ArticleCASADS Google Scholar
Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell110, 385–397 (2002). ArticleCAS Google Scholar
Ying, Q. L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nature Biotechnol.21, 183–186 (2003). ArticleCAS Google Scholar
Li, X. J. et al. Specification of motoneurons from human embryonic stem cells. Nature Biotechnol.23, 215–221 (2005). Article Google Scholar
Kattman, S. J., Huber, T. L. & Keller, G. M. Multipotent Flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev. Cell11, 723–732 (2006). ArticleCAS Google Scholar
Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnol.25, 1015–1024 (2007). ArticleCAS Google Scholar
D'Amour, K. A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotechnol.23, 1534–1541 (2005). ArticleCAS Google Scholar
Warashina, M. et al. A synthetic small molecule that induces neuronal differentiation of adult hippocampal neural progenitor cells. Angew. Chemie Int. Edn Engl.45, 591–593 (2006). ArticleCAS Google Scholar
Diamandis, P. et al. Chemical genetics reveals a complex functional ground state of neural stem cells. Nature Chem. Biol.3, 268–273 (2007). ArticleCAS Google Scholar
Saxe, J. P. et al. A phenotypic small-molecule screen identifies an orphan ligand-receptor pair that regulates neural stem cell differentiation. Chem. Biol.14, 1019–1030 (2007). ArticleCAS Google Scholar
Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E. & Gage, F. H. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc. Natl Acad. Sci. USA101, 16659–16664 (2004). ArticleCASADS Google Scholar
Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science301, 805–809 (2003). ArticleCASADS Google Scholar
Hochedlinger, K. & Jaenisch, R. Nuclear reprogramming and pluripotency. Nature441, 1061–1067 (2006). ArticleCASADS Google Scholar
Eggan, E. et al. Mice cloned from olfactory sensory neurons. Nature428, 44–49 (2004). ArticleCASADS Google Scholar
Ying, Q. L., Nichols, J., Evans, E. P. & Smith, A. G. Changing potency by spontaneous fusion. Nature416, 545–548 (2002). ArticleCASADS Google Scholar
Do, J. T. & Scholer, H. R. Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells22, 941–949 (2004). ArticleCAS Google Scholar
Cowan, C. A., Atienza, J., Melton, D. A. & Eggan, K. Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science309, 1369–1373 (2005). ArticleCASADS Google Scholar
Cobaleda, C., Jochum, W. & Busslinger, M. Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature449, 473–477 (2007). ArticleCASADS Google Scholar
Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nature Immunol.8, 463–470 (2007). ArticleCAS Google Scholar
Kondo, T. & Raff, M. Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science289, 1754–1757 (2000). ArticleCASADS Google Scholar
Shen, C. N., Slack, J. M. W. & Tosh, D. Molecular basis of transdifferentiation of pancreas to liver. Nature Cell Biol.2, 879–887 (2000). ArticleCAS Google Scholar
Egli, D., Rosains, J., Birkhoff, G. & Eggan, K. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature447, 679–685 (2007). ArticleCASADS Google Scholar
Byrne, J. A. et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature450, 497–502 (2007). ArticleCASADS Google Scholar
Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell1, 39–49 (2007). ArticleCAS Google Scholar
Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature448, 313–317 (2007). ArticleCASADS Google Scholar
Meissner, A., Wernig, M. & Jaenisch, R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nature Biotechnol.25, 1177–1181 (2007). ArticleCAS Google Scholar
Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell1, 55–70 (2007). ArticleCAS Google Scholar
Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007). ArticleCAS Google Scholar
Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007). ArticleCASADS Google Scholar
Zhang, F., Pomerantz, J. H., Sen, G., Palermo, A. T., & Blau, H. M. Active tissue-specific DNA demethylation conferred by somatic cell nuclei in stable heterokaryons. Proc. Natl Acad. Sci. USA104, 4395–400 (2007). ArticleCASADS Google Scholar
Horb, M. E., Shen, C. N., Tosh, D. & Slack, J. M. W. Experimental conversion of liver to pancreas. Curr. Biol.13, 105–115 (2003). ArticleCAS Google Scholar
Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell126, 677–689 (2006). ArticleCAS Google Scholar
Chen, S. B. et al. Reversine increases the plasticity of lineage-committed mammalian cells. Proc. Natl Acad. Sci. USA104, 10482–10487 (2007). ArticleCASADS Google Scholar
North, T. E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature447, 1007–1011 (2007). This paper describes a chemical screen in zebrafish that led to the identification of PGE2as a potent regulator of vertebrate HSC homeostasis. ArticleCASADS Google Scholar
Zhang, Q. S. et al. Small-molecule synergist of the Wnt–β-catenin signaling pathway. Proc. Natl Acad. Sci. USA104, 7444–7448 (2007). ArticleCASADS Google Scholar
Adams, G. B. et al. Therapeutic targeting of a stem cell niche. Nature Biotechnol.25, 238–243 (2007). This paper provides a proof-of-principle demonstration that targeting stem-cell nichesin vivoby conventional therapeutics can enhance stem-cell function and is an attractive strategy for regenerative medicine. ArticleCAS Google Scholar
Koprivica, V. et al. EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science310, 106–110 (2005). ArticleCASADS Google Scholar
Ying, Q.-L. et al. The ground state of embryonic stem cell self-renewal. Nature doi:10.1038/nature06968 (in the press).