Landscape of genomic alterations in cervical carcinomas (original) (raw)
Accession codes
Data deposits
Sequence data used for this analysis are available in dbGaP under accession phs000600.
References
- Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011)
PubMed Google Scholar - International Agency for Research on Cancer. A review of human carcinogen: biological agents. in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Vol. 100B (International Agency for Research on Cancer, 2012)
- zur Hausen, H. Papillomaviruses in the causation of human cancers — a brief historical account. Virology 384, 260–265 (2009)
CAS PubMed Google Scholar - Crook, T. et al. Clonal p53 mutation in primary cervical cancer: association with human-papillomavirus-negative tumours. Lancet 339, 1070–1073 (1992)
CAS PubMed Google Scholar - McIntyre, J. B. et al. PIK3CA mutational status and overall survival in patients with cervical cancer treated with radical chemoradiotherapy. Gynecol. Oncol. 128, 409–414 (2013)
CAS PubMed Google Scholar - Kang, S. et al. Inverse correlation between RASSF1A hypermethylation, KRAS and BRAF mutations in cervical adenocarcinoma. Gynecol. Oncol. 105, 662–666 (2007)
CAS PubMed Google Scholar - Wingo, S. N. et al. Somatic LKB1 mutations promote cervical cancer progression. PLoS ONE 4, e5137 (2009)
ADS PubMed PubMed Central Google Scholar - Narayan, G. & Murty, V. V. Integrative genomic approaches in cervical cancer: implications for molecular pathogenesis. Future Oncol. 6, 1643–1652 (2010)
CAS PubMed Google Scholar - Vazquez-Mena, O. et al. Amplified genes may be overexpressed, unchanged, or downregulated in cervical cancer cell lines. PLoS ONE 7, e32667 (2012)
ADS CAS PubMed PubMed Central Google Scholar - Arteaga, C. L. & Baselga, J. Impact of genomics on personalized cancer medicine. Clin. Cancer Res. 18, 612–618 (2012)
CAS PubMed Google Scholar - Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nature Biotechnol. 31, 213–219 (2013)
CAS Google Scholar - Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013)
ADS CAS PubMed PubMed Central Google Scholar - Lohr, J. G. et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl Acad. Sci. USA 109, 3879–3884 (2012)
ADS CAS PubMed PubMed Central Google Scholar - Greulich, H. et al. Functional analysis of receptor tyrosine kinase mutations in lung cancer identifies oncogenic extracellular domain mutations of ERBB2. Proc. Natl Acad. Sci. USA 109, 14476–14481 (2012)
ADS CAS PubMed PubMed Central Google Scholar - Bose, R. et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 3, 224–237 (2012)
PubMed PubMed Central Google Scholar - Arvind, R. et al. A mutation in the common docking domain of ERK2 in a human cancer cell line, which was associated with its constitutive phosphorylation. Int. J. Oncol. 27, 1499–1504 (2005)
CAS PubMed Google Scholar - De Luca, A., Maiello, M. R., D’Alessio, A., Pergameno, M. & Normanno, N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin. Ther. Targets 16 (Suppl. 2). S17–S27 (2012)
CAS PubMed Google Scholar - Le Gallo, M. et al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. Nature Genet. 44, 1310–1315 (2012)
CAS PubMed Google Scholar - Agrawal, N. et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333, 1154–1157 (2011)
ADS CAS PubMed PubMed Central Google Scholar - Chen, J., Ghazawi, F. M. & Li, Q. Interplay of bromodomain and histone acetylation in the regulation of p300-dependent genes. Epigenetics 5, 509–515 (2010)
CAS PubMed PubMed Central Google Scholar - Smith, T. F., Gaitatzes, C., Saxena, K. & Neer, E. J. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24, 181–185 (1999)
CAS PubMed Google Scholar - Tong, K. I. et al. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol. Cell. Biol. 26, 2887–2900 (2006)
CAS PubMed PubMed Central Google Scholar - Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012)
- Pamer, E. & Cresswell, P. Mechanisms of MHC class I-restricted antigen processing. Annu. Rev. Immunol. 16, 323–358 (1998)
CAS PubMed Google Scholar - Neve, R. M., Ylstra, B., Chang, C. H., Albertson, D. G. & Benz, C. C. ErbB2 activation of ESX gene expression. Oncogene 21, 3934–3938 (2002)
CAS PubMed Google Scholar - Wentzensen, N., Vinokurova, S. & von Knebel Doeberitz, M. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res. 64, 3878–3884 (2004)
CAS PubMed Google Scholar - Kraus, I. et al. The majority of viral-cellular fusion transcripts in cervical carcinomas cotranscribe cellular sequences of known or predicted genes. Cancer Res. 68, 2514–2522 (2008)
CAS PubMed Google Scholar - Schmitz, M., Driesch, C., Jansen, L., Runnebaum, I. B. & Durst, M. Non-random integration of the HPV genome in cervical cancer. PLoS ONE 7, e39632 (2012)
ADS CAS PubMed PubMed Central Google Scholar - Tang, K. W., Alaei-Mahabadi, B., Samuelsson, T., Lindh, M. & Larsson, E. The landscape of viral expression and host gene fusion and adaptation in human cancer. Nature Commun. 4, 2513 (2013)
ADS Google Scholar - Peter, M. et al. Frequent genomic structural alterations at HPV insertion sites in cervical carcinoma. J. Pathol. 221, 320–330 (2010)
CAS PubMed Google Scholar - Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nature Biotechnol. 27, 182–189 (2009)
CAS Google Scholar - Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009)
Article CAS PubMed PubMed Central Google Scholar - Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009)
PubMed PubMed Central Google Scholar - Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011)
ADS CAS PubMed PubMed Central Google Scholar - Banerji, S. et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486, 405–409 (2012)
ADS CAS PubMed PubMed Central Google Scholar - Lee, R. S. et al. A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J. Clin. Invest. 122, 2983–2988 (2012)
CAS PubMed PubMed Central Google Scholar - Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature 470, 214–220 (2011)
ADS CAS PubMed PubMed Central Google Scholar - Chapman, M. A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011)
ADS CAS PubMed PubMed Central Google Scholar - Cibulskis, K. et al. ContEst: estimating cross-contamination of human samples in next-generation sequencing data. Bioinformatics 27, 2601–2602 (2011)
CAS PubMed PubMed Central Google Scholar - Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011)
CAS PubMed Google Scholar - DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genet. 43, 491–498 (2011)
CAS PubMed Google Scholar - McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010)
CAS PubMed PubMed Central Google Scholar - Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nature Biotechnol. 30, 413–421 (2012)
CAS Google Scholar - Erlich, H. HLA DNA typing: past, present, and future. Tissue Antigens 80, 1–11 (2012)
CAS PubMed Google Scholar - Ward, J. H., Jr Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963)
MathSciNet Google Scholar - Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnol. 31, 46–63 (2012)
Google Scholar - Bass, A. J. et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nature Genet. 43, 964–968 (2011)
CAS PubMed Google Scholar - Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191–196 (2010)
ADS CAS PubMed Google Scholar - Wilkerson, M. D. & Hayes, D. N. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 26, 1572–1573 (2010)
CAS PubMed PubMed Central Google Scholar - Cañadas, M. P. et al. Comparison of the f-HPV typing and Hybrid Capture II assays for detection of high-risk HPV genotypes in cervical samples. J. Virol. Methods 183, 14–18 (2012)
PubMed Google Scholar - Walline, H. M. et al. High-risk human papillomavirus detection in oropharyngeal, nasopharyngeal, and, oral cavity cancers: comparison of multiple methods. JAMA Otolaryngol. Head Neck Surg. http://dx.doi.org/10.1001/jamaoto.2013.5460. (31 October 2013)
- Yang, H. et al. Sensitive detection of human papillomavirus in cervical, head/neck, and schistosomiasis-associated bladder malignancies. Proc. Natl Acad. Sci. USA 102, 7683–7688 (2005)
ADS CAS PubMed PubMed Central Google Scholar - Kostic, A. D. et al. PathSeq: software to identify or discover microbes by deep sequencing of human tissue. Nature Biotechnol. 29, 393–396 (2011)
CAS Google Scholar - Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005)
ADS CAS PubMed PubMed Central Google Scholar - Harris, R. S. & Liddament, M. T. Retroviral restriction by APOBEC proteins. Nature Rev. Immunol. 4, 868–877 (2004)
CAS Google Scholar - Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nature Genet. 45, 970–976 (2013)
CAS PubMed Google Scholar
Acknowledgements
This work was conducted as part of the Slim Initiative for Genomic Medicine in the Americas, a project funded by the Carlos Slim Health Institute in Mexico. This work was also partially supported by the Rebecca Ridley Kry Fellowship of the Damon Runyon Cancer Research Foundation (A.I.O.); MMRF Research Fellow Award (A.I.O.); Helse Vest, Research Council of Norway, Norwegian Cancer Society and Harald Andersens legat (H.B.S.); CONACyT grant SALUD-2008-C01-87625 and UANL PAICyT grant CS1038-1 (H.A.B.-S.); and CONACyT grant 161619 (J.M.-Z.). We also thank B. Edvardsen, K. Dahl-Michelsen, Å. Mokleiv, K. Madisso, T. Njølstad and E. Valen for technical and programmatic assistance; the staff of the Broad Institute Genomics Platform for their assistance in processing samples and generating the sequencing data used in the analyses; the Instituto Mexicano del Seguro Social (IMSS) for their Support; and L. Gaffney of Broad Institute Communications for figure layout and design.
Author information
Author notes
- Akinyemi I. Ojesina, Lee Lichtenstein, Helga B. Salvesen and Matthew Meyerson: These authors contributed equally to this work.
Authors and Affiliations
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, 02215, Massachusetts, USA
Akinyemi I. Ojesina, Chandra Sekhar Pedamallu, Trevor J. Pugh, Alexi A. Wright, Fujiko Duke, Bethany Kaplan, Rui Wang, Heidi Greulich & Matthew Meyerson - The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, 02142, Massachusetts, USA
Akinyemi I. Ojesina, Lee Lichtenstein, Samuel S. Freeman, Chandra Sekhar Pedamallu, Trevor J. Pugh, Andrew D. Cherniack, Lauren Ambrogio, Kristian Cibulskis, Mara W. Rosenberg, Bethany Kaplan, Elizabeth Nickerson, Michael S. Lawrence, Chip Stewart, Scott L. Carter, Aaron McKenna, Maria L. Cortes, Heidi Greulich, Stacey B. Gabriel, Gad Getz & Matthew Meyerson - Instituto Nacional de Medicina Genomica, Mexico City 14610, Mexico,
Ivan Imaz-Rosshandler, Sandra Romero-Cordoba, Karla Vazquez-Santillan, Alberto Salido Guadarrama, Magali Espinosa-Castilla, Nayeli Belem Gabiño, Alfredo Hidalgo-Miranda, Claudia Rangel Escareno & Jorge Melendez-Zajgla - Department of Pathology, Haukeland University Hospital, N5021 Bergen, Norway,
Bjørn Bertelsen, Lars A. Akslen & Olav K. Vintermyr - Tecnológico de Monterrey, Monterrey 64849, Mexico,
Victor Treviño - Department of Medicine, Brigham and Women’s Hospital, Boston, 02115, Massachusetts, USA
Alexi A. Wright & Heidi Greulich - Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
Rui Wang - Cancer Biology Program, Program in the Biomedical Sciences, Rackham Graduate School, University of Michigan, Ann Arbor, 48109, Michigan, USA
Heather M. Walline - Facultad de Medicina y Hospital Universitario ‘Dr. José Eluterio González’ de la Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, México,
Iram P. Rodriguez-Sanchez, Gabriela Sofia Gómez-Macías, Lezmes D. Valdez-Chapa, María Lourdes Garza-Rodríguez & Hugo A. Barrera-Saldaña - Department of Obstetrics and Gynecology, Haukeland University Hospital, N5021 Bergen, Norway,
Kathrine Woie, Line Bjorge, Elisabeth Wik, Mari K. Halle, Erling A. Hoivik, Camilla Krakstad & Helga B. Salvesen - Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, N5020 Bergen, Norway,
Line Bjorge, Elisabeth Wik, Mari K. Halle, Erling A. Hoivik, Camilla Krakstad & Helga B. Salvesen - Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico,
German Maytorena, Jorge Vazquez, Carlos Rodea & Adrian Cravioto - Department of Pathology, Brigham and Women’s Hospital, Boston, 02115, Massachusetts, USA
Christopher P. Crum & Matthew Meyerson - Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, 02215, Massachusetts, USA
Donna S. Neuberg - Claremont Graduate University, Claremont, 91711, California, USA
Claudia Rangel Escareno - Department of Clinical Medicine, Centre for Cancer Biomarkers, University of Bergen, N5020 Bergen, Norway,
Lars A. Akslen & Olav K. Vintermyr - Head and Neck Oncology Program and Department of Otolaryngology, University of Michigan Comprehensive Cancer Center, Ann Arbor, 38109, Michigan, USA
Thomas E. Carey - Massachusetts General Hospital Cancer Center and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, 02114, Massachusetts, USA
Gad Getz
Authors
- Akinyemi I. Ojesina
- Lee Lichtenstein
- Samuel S. Freeman
- Chandra Sekhar Pedamallu
- Ivan Imaz-Rosshandler
- Trevor J. Pugh
- Andrew D. Cherniack
- Lauren Ambrogio
- Kristian Cibulskis
- Bjørn Bertelsen
- Sandra Romero-Cordoba
- Victor Treviño
- Karla Vazquez-Santillan
- Alberto Salido Guadarrama
- Alexi A. Wright
- Mara W. Rosenberg
- Fujiko Duke
- Bethany Kaplan
- Rui Wang
- Elizabeth Nickerson
- Heather M. Walline
- Michael S. Lawrence
- Chip Stewart
- Scott L. Carter
- Aaron McKenna
- Iram P. Rodriguez-Sanchez
- Magali Espinosa-Castilla
- Kathrine Woie
- Line Bjorge
- Elisabeth Wik
- Mari K. Halle
- Erling A. Hoivik
- Camilla Krakstad
- Nayeli Belem Gabiño
- Gabriela Sofia Gómez-Macías
- Lezmes D. Valdez-Chapa
- María Lourdes Garza-Rodríguez
- German Maytorena
- Jorge Vazquez
- Carlos Rodea
- Adrian Cravioto
- Maria L. Cortes
- Heidi Greulich
- Christopher P. Crum
- Donna S. Neuberg
- Alfredo Hidalgo-Miranda
- Claudia Rangel Escareno
- Lars A. Akslen
- Thomas E. Carey
- Olav K. Vintermyr
- Stacey B. Gabriel
- Hugo A. Barrera-Saldaña
- Jorge Melendez-Zajgla
- Gad Getz
- Helga B. Salvesen
- Matthew Meyerson
Contributions
A.I.O., L.L., S.S.F., C.S.P., H.B.S. and M.M. wrote the manuscript with help from co-authors. A.I.O., L.L., K.C., C.S. and G.G. performed whole exome and genome sequencing data analysis. A.I.O., I.I., V.T., K.V.-S., A.S.G., S.R.-C., C.R.E., S.S.F. and C.S.P. performed RNA sequencing data analysis. A.I.O., S.S.F., C.S.P. and T.J.P. performed HPV integration analyses. A.I.O. and A.D.C. performed copy-number analyses. A.I.O., F.D., B.K., R.W. and H.G. performed functional experiments on MAPK1. B.B., N.B.G., G.S.G.-M. and C.P.C. facilitated and performed pathology review. O.K.V., H.M.W. and T.E.C. performed HPV status determination. L.A., E.N. and M.L.C. facilitated project management. L.L., I.I.-R., V.T., K.V.-S., A.S.G., S.R.-C., I.P.R.-S. and C.R.E. performed sequencing data validation. M.E.-C., M.K.H., E.W., E.A.H., C.K. and M.L.G.-R. performed specimen processing, biobanking and data management. K.W., L.B., L.D.V.-C., G.M., J.V., C.R., A.C. and H.B.S. collected patient materials and clinical information. A.I.O., L.L. and D.S.N. performed biostatistical and epidemiological analyses. A.I.O., L.L., S.S.F., C.S.P., I.I.-R., T.J.P., A.D.C., V.T., A.A.W., M.W.R., F.D., M.S.L., C.S., S.L.C., A.M., H.B.S. and M.M. contributed text, figures (including Supplementary Information) and analytical tools. A.H.-M., C.R.E., L.A.A., S.B.G., H.A.B.-S., J.M.-Z., G.G., H.B.S. and M.M. provided leadership for the project. All authors contributed to the final manuscript. Lead authors A.I.O. and L.L. and senior authors M.M. and H.B.S. contributed equally to this work.
Corresponding authors
Correspondence toHelga B. Salvesen or Matthew Meyerson.
Ethics declarations
Competing interests
M.M. holds equity in, and consults for, Foundation Medicine.
Supplementary information
Supplementary Information
This file contains Supplementary Notes 1-15 with additional references (see Contents for more details), Supplementary Figures 1-30 and Supplementary Tables 1-11, 13 and 15-21 (see separate files for tables 12 and 14). (PDF 5727 kb)
Supplementary Table 12
This zipped file contains the correlation between RNASeq-derived gene expression and WES-derived copy number across 16898 genes, as well as the full complement of the raw values for these two parameters for 79 tumors with RNASeq data. (ZIP 30025 kb)
Supplementary Table 14
This file contains details of HPV typing and viral integration analyses. (XLSX 56 kb)
PowerPoint slides
Source data
Rights and permissions
About this article
Cite this article
Ojesina, A., Lichtenstein, L., Freeman, S. et al. Landscape of genomic alterations in cervical carcinomas.Nature 506, 371–375 (2014). https://doi.org/10.1038/nature12881
- Received: 19 December 2012
- Accepted: 13 November 2013
- Published: 25 December 2013
- Issue date: 20 February 2014
- DOI: https://doi.org/10.1038/nature12881