Cathomen, T. & Joung, J.K. Zinc-finger nucleases: the next generation emerges. Mol. Ther.16, 1200–1207 (2008). ArticleCASPubMed Google Scholar
Galetto, R., Duchateau, P. & Paques, F. Targeted approaches for gene therapy and the emergence of engineered meganucleases. Expert Opin. Biol. Ther.9, 1289–1303 (2009). ArticleCASPubMed Google Scholar
Hoeijmakers, J.H. Genome maintenance mechanisms for preventing cancer. Nature411, 366–374 (2001). ArticleCASPubMed Google Scholar
Ochiai, H. et al. Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases. Genes Cells15, 875–885 (2010). CASPubMed Google Scholar
Takasu, Y. et al. Targeted mutagenesis in the silkworm Bombyx mori using zinc finger nuclease mRNA injection. Insect Biochem. Mol. Biol.40, 759–765 (2010). ArticleCASPubMed Google Scholar
Morton, J., Davis, M.W., Jorgensen, E.M. & Carroll, D. Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc. Natl. Acad. Sci. USA103, 16370–16375 (2006). ArticleCASPubMedPubMed Central Google Scholar
Holt, N. et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat. Biotechnol.28, 839–847 (2010). ArticleCASPubMedPubMed Central Google Scholar
Benabdallah, B.F. et al. Targeted gene addition to human mesenchymal stromal cells as a cell-based plasma-soluble protein delivery platform. Cytotherapy12, 394–399 (2010). ArticleCASPubMed Google Scholar
Zou, J. et al. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell5, 97–110 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hockemeyer, D. et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat. Biotechnol.27, 851–857 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lombardo, A. et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol.25, 1298–1306 (2007). ArticleCASPubMed Google Scholar
Perez, E.E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol.26, 808–816 (2008). ArticleCASPubMedPubMed Central Google Scholar
Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature435, 646–651 (2005). ArticleCASPubMed Google Scholar
Bibikova, M., Golic, M., Golic, K.G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics161, 1169–1175 (2002). CASPubMedPubMed Central Google Scholar
Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science300, 763 (2003). ArticlePubMed Google Scholar
Maeder, M.L. et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell31, 294–301 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kim, H.J., Lee, H.J., Kim, H., Cho, S.W. & Kim, J.S. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res.19, 1279–1288 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kim, Y.G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA93, 1156–1160 (1996). ArticleCASPubMedPubMed Central Google Scholar
Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science326, 1509–1512 (2009). ArticleCASPubMed Google Scholar
Moscou, M.J. & Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors. Science326, 1501 (2009). ArticleCASPubMed Google Scholar
Römer, P. et al. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science318, 645–648 (2007). ArticlePubMed Google Scholar
Kay, S., Hahn, S., Marois, E., Hause, G. & Bonas, U. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science318, 648–651 (2007). ArticleCASPubMed Google Scholar
Kay, S. & Bonas, U. How Xanthomonas type III effectors manipulate the host plant. Curr. Opin. Microbiol.12, 37–43 (2009). ArticleCASPubMed Google Scholar
Bogdanove, A.J., Schornack, S. & Lahaye, T. TAL effectors: finding plant genes for disease and defense. Curr. Opin. Plant Biol.13, 394–401 (2010). ArticleCASPubMed Google Scholar
Boch, J. & Bonas, U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu. Rev. Phytopathol.48, 419–436 (2010). ArticleCASPubMed Google Scholar
Li, T. et al. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. published online, doi:10.1093/nar/gkq704 (10 August 2010).
Szurek, B., Rossier, O., Hause, G. & Bonas, U. Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell. Mol. Microbiol.46, 13–23 (2002). ArticleCASPubMed Google Scholar
Chao, M.V., Rajagopal, R. & Lee, F.S. Neurotrophin signalling in health and disease. Clin. Sci. (Lond.)110, 167–173 (2006). ArticleCAS Google Scholar
Kay, S., Hahn, S., Marois, E., Wieduwild, R. & Bonas, U. Detailed analysis of the DNA recognition motifs of the Xanthomonas type III effectors AvrBs3 and AvrBs3Deltarep16. Plant J.59, 859–871 (2009). ArticleCASPubMed Google Scholar
Miller, J.C. et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol.25, 778–785 (2007). ArticleCASPubMed Google Scholar
Guschin, D.Y. et al. A rapid and general assay for monitoring endogenous gene modification. Methods Mol. Biol.649, 247–256 (2010). ArticleCASPubMed Google Scholar
Doyon, Y. et al. Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat. Methods7, 459–460 (2010). ArticleCASPubMed Google Scholar
Orlando, S.J. et al. Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res.38, e152 (2010). ArticlePubMedPubMed Central Google Scholar
Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell86, 367–377 (1996). ArticleCASPubMed Google Scholar
Redondo, P. et al. Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases. Nature456, 107–111 (2008). ArticleCASPubMed Google Scholar
DeKelver, R.C. et al. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res.20, 1133–1142 (2010). ArticleCASPubMedPubMed Central Google Scholar
Doyon, Y. et al. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat. Methods published online, doi: 10.1038/nmeth.1539 (5 December 2010).
Cuthbert, G.L. et al. Histone deimination antagonizes arginine methylation. Cell118, 545–553 (2004). ArticleCASPubMed Google Scholar
Reik, A. et al. Enhanced protein production by engineered zinc finger proteins. Biotechnol. Bioeng.97, 1180–1189 (2007). ArticleCASPubMed Google Scholar
Liu, P.Q. et al. Isogenic human cell lines for drug discovery: regulation of target gene expression by engineered zinc-finger protein transcription factors. J. Biomol. Screen.10, 304–313 (2005). ArticleCASPubMed Google Scholar
Whitlock, P.R., Hackett, N.R., Leopold, P.L., Rosengart, T.K. & Crystal, R.G. Adenovirus-mediated transfer of a minigene expressing multiple isoforms of VEGF is more effective at inducing angiogenesis than comparable vectors expressing individual VEGF cDNAs. Mol. Ther.9, 67–75 (2004). ArticleCASPubMed Google Scholar
Ozawa, C.R. et al. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J. Clin. Invest.113, 516–527 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tan, S. et al. Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc. Natl. Acad. Sci. USA100, 11997–12002 (2003). ArticleCASPubMedPubMed Central Google Scholar
Morbitzer, R., Römer, P., Boch, J. & Lahaye, T. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc. Natl. Acad. Sci. USA (2010).
Hoover, D.M. & Lubkowski, J. DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res.30, e43 (2002). ArticlePubMedPubMed Central Google Scholar