Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins (original) (raw)

References

  1. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).
    Article CAS PubMed Google Scholar
  2. Heim, R. & Tsien, R. Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182 (1996).
    Article CAS PubMed Google Scholar
  3. Patterson, G., Day, R. & Piston, D. Fluorescent protein spectra. J. Cell Sci. 114, 837–838 (2001).
    CAS PubMed Google Scholar
  4. Matz, M. V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnol. 17, 969–973 (1999).
    Article CAS Google Scholar
  5. Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Biochemistry, mutagenesis and oligomerization of DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA 97, 11984–11989 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  6. Rizzuto, R. et al. Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo. Curr. Biol. 6, 183–188 (1996).
    Article CAS PubMed Google Scholar
  7. Ellenberg, J., Lippincott-Schwartz, J. & Presley, J. F. Two-color green fluorescent protein time-lapse imaging. Biotechniques 25, 838–842, 844–846 (1998).
    Article CAS PubMed Google Scholar
  8. Falk, M. M. Connexin-specific distribution within gap junctions revealed in living cells. J. Cell Sci. 113, 4109–4120 (2000).
    CAS PubMed Google Scholar
  9. Miller, D. M. 3rd et al. Two-color GFP expression system for C. elegans. Biotechniques 26, 914–918, 920–921 (1999).
    Article CAS PubMed Google Scholar
  10. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).
    Article CAS PubMed Google Scholar
  11. Hawley, T. S., Telford, W. G. & Hawley, R. G. 'Rainbow' reporters for multispectral marking and lineage analysis of hematopoietic stem cells. Stem Cells 19, 118–124 (2001).
    Article CAS PubMed Google Scholar
  12. Tsukamoto, T. et al. Visualization of gene activity in living cells. Nature Cell Biol. 2, 871–878 (2000).
    Article CAS PubMed Google Scholar
  13. Li, X. et al. Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem. 273, 34970–34975 (1998).
    Article CAS PubMed Google Scholar
  14. Dantuma, N. P., Lindsten, K., Glas, R., Jellne, M. & Masucci, M. G. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nature Biotechnol. 18, 538–543 (2000).
    Article CAS Google Scholar
  15. Terskikh, A. et al. 'Fluorescent timer': protein that changes color with time. Science 290, 1585–1588 (2000).
    Article CAS PubMed Google Scholar
  16. Bellaiche, Y., Gho, M., Kaltschmidt, J. A., Brand, A. H. & Schweisguth, F. Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nature Cell Biol. 3, 50–57 (2001).
    Article CAS PubMed Google Scholar
  17. Straight, A. F., Belmont, A. S., Robinett, C. C. & Murray, A. W. GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6, 1599–1608 (1996).
    Article CAS PubMed Google Scholar
  18. Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).
    Article CAS PubMed Google Scholar
  19. Rizzuto, R., Brini, M., Pizzo, P., Murgia, M. & Pozzan, T. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr. Biol. 5, 635–642 (1995).
    Article CAS PubMed Google Scholar
  20. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).
    Article CAS PubMed Google Scholar
  21. Litman, P., Amieva, M. R. & Furthmayr, H. Imaging of dynamic changes of the actin cytoskeleton in microextensions of live NIH3T3 cells with a GFP fusion of the F-actin binding domain of Moesin. BMC Cell Biol. 1, 1 (2000), (http://www.biomedcentral.com/1471-2121/1/1/)
    Article CAS PubMed PubMed Central Google Scholar
  22. Edwards, K. A., Demsky, M., Montague, R. A., Weymouth, N. & Kiehart, D. P. GFP–moesin illuminates actin cytoskeleton dynamics in living tissue and demonstrates cell shape changes during morphogenesis in Drosophila. Dev. Biol. 191, 103–117 (1997).
    Article CAS PubMed Google Scholar
  23. Murray, M. J., Merritt, D. J., Brand, A. H. & Whitington, P. M. In vivo dynamics of axon pathfinding in the Drosophila CNS: a time-lapse study of an identified motor neuron. J. Neurobiol. 37, 607–621 (1998).
    Article CAS PubMed Google Scholar
  24. Nonet, M. L. Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein–GFP fusions. J. Neurosci. Methods 89, 33–40 (1999).
    Article CAS PubMed Google Scholar
  25. Estes, P. S., Ho, G. L., Narayanan, R. & Ramaswami, M. Synaptic localization and restricted diffusion of a Drosophila neuronal synaptobrevin—green fluorescent protein chimera in vivo. J. Neurogenet. 13, 233–255 (2000).
    Article CAS PubMed Google Scholar
  26. Wacker, I. et al. Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein. J. Cell Sci. 110, 1453–1463 (1997).
    CAS PubMed Google Scholar
  27. El Meskini, R. et al. A signal sequence is sufficient for green fluorescent protein to be routed to regulated secretory granules. Endocrinology 142, 864–873 (2001).
    Article CAS PubMed Google Scholar
  28. Gonzalez, C. & Bejarano, L. A. Protein traps: using intracellular localization for cloning. Trends Cell Biol. 10, 162–165 (2000).
    Article CAS PubMed Google Scholar
  29. Simpson, J. C., Wellenreuther, R., Poustka, A., Pepperkok, R. & Wiemann, S. Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep. 1, 287–292 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  30. Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).
    Article CAS PubMed Google Scholar
  31. Beach, D. L., Salmon, E. D. & Bloom, K. Localization and anchoring of mRNA in budding yeast. Curr. Biol. 9, 569–578 (1999).
    Article CAS PubMed Google Scholar
  32. Rook, M. S., Lu, M. & Kosik, K. S. CaMKIIα 3′ untranslated region-directed mRNA translocation in living neurons: visualization by GFP linkage. J. Neurosci. 20, 6385–6393 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  33. Elliott, G. & O'Hare, P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88, 223–233 (1997).
    Article CAS PubMed Google Scholar
  34. Entchev, E. V., Schwabedissen, A. & Gonzalez-Gaitan, M. Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–991 (2000).
    Article CAS PubMed Google Scholar
  35. Teleman, A. A. & Cohen, S. M. Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103, 971–980 (2000).
    Article CAS PubMed Google Scholar
  36. Kohara, K., Kitamura, A., Morishima, M. & Tsumoto, T. Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. Science 291, 2419–2423 (2001).
    Article CAS PubMed Google Scholar
  37. Patterson, G. H., Piston, D. W. & Barisas, B. G. Forster distances between green fluorescent protein pairs. Anal. Biochem. 284, 438–440 (2000).
    Article CAS PubMed Google Scholar
  38. Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978).
    Article CAS PubMed Google Scholar
  39. Suzuki, Y., Yasunaga, T., Ohkura, R., Wakabayashi, T. & Sutoh, K. Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps. Nature 396, 380–383 (1998).
    Article CAS PubMed Google Scholar
  40. Janetopoulos, C., Jin, T. & Devreotes, P. Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science 291, 2408–2411 (2001).
    Article CAS PubMed Google Scholar
  41. Majoul, I., Straub, M., Hell, S. W., Duden, R. & Söling, H.-D. KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET. Dev. Cell 1, 139–153 (2001).
    Article CAS PubMed Google Scholar
  42. De Angelis, D. A., Miesenbock, G., Zemelman, B. V. & Rothman, J. E. PRIM: proximity imaging of green fluorescent protein-tagged polypeptides. Proc. Natl. Acad. Sci. USA 95, 12312–12316 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  43. Gordon, G. W., Berry, G., Liang, X. H., Levine, B. & Herman, B. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74, 2702–2713 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  44. Xia, Z. & Liu, Y. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 81, 2395–2402 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  45. Gadella, T. W. J. J., Jovin, T. M. & Clegg, R. M. Fluorescence lifetime imaging microscopy (FLIM)—spatial resolution of microstructures on the nanosecond time-scale. Biophys. Chem. 48, 221–239 (1993).
    Article CAS Google Scholar
  46. Ng, T. et al. Imaging protein kinase Cα activation in cells. Science 283, 2085–2089 (1999).
    Article CAS PubMed Google Scholar
  47. Wouters, F. S. & Bastiaens, P. I. Fluorescence lifetime imaging of receptor tyrosine kinase activity in cells. Curr. Biol. 9, 1127–1130 (1999).
    Article CAS PubMed Google Scholar
  48. Verveer, P. J., Wouters, F. S., Reynolds, A. R. & Bastiaens, P. I. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290, 1567–1570 (2000).
    Article CAS PubMed Google Scholar
  49. Xu, Y., Piston, D. W. & Johnson, C. H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl. Acad. Sci. USA 96, 151–156 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  50. Angers, S. et al. Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl. Acad. Sci. USA 97, 3684–3689 (2000).
    CAS PubMed PubMed Central Google Scholar
  51. Baubet, V. et al. Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc. Natl. Acad. Sci. USA 97, 7260–7265 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  52. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).
    Article CAS PubMed Google Scholar
  53. Miyawaki, A., Griesbeck, O., Heim, R. & Tsien, R. Y. Dynamic and quantitative Ca2+ measurements using improved CAMeleons. Proc. Natl. Acad. Sci. USA 96, 2135–2140 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  54. Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A. & Tsien, R. Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001).
    Article CAS PubMed Google Scholar
  55. Emmanouilidou, E. et al. Imaging Ca2+ concentration changes at the secretory vesicle surface with a recombinant targeted CAMeleon. Curr. Biol. 9, 915–918 (1999).
    Article CAS PubMed Google Scholar
  56. Allen, G. J. et al. CAMeleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J. 19, 735–747 (1999).
    Article CAS PubMed Google Scholar
  57. Kerr, R. et al. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26, 583–594 (2000).
    Article CAS PubMed Google Scholar
  58. Llopis, J., McCaffery, J. M., Miyawaki, A., Farquhar, M. G. & Tsien, R. Y. Measurement of cytosolic, mitochondrial and Golgi pH in single living cells with green fluorescent proteins. Proc. Natl. Acad. Sci. USA 95, 6803–6808 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  59. Kneen, M., Farinas, J., Li, Y. & Verkman, A. S. Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys. J. 74, 1591–1599 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  60. Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).
    Article CAS PubMed Google Scholar
  61. Yuste, R., Miller, R. B., Holthoff, K., Zhang, S. & Miesenbock, G. Synapto-pHluorins: chimeras between pH-sensitive mutants of green fluorescent protein and synaptic vesicle membrane proteins as reporters of neurotransmitter release. Methods Enzymol. 327, 522–546 (2000).
    Article CAS PubMed Google Scholar
  62. Kuner, T. & Augustine, G. J. A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 27, 447–459 (2000).
    Article CAS PubMed Google Scholar
  63. Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. USA 96, 11241–11246 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  64. Nagai, T., Sawano, A., Park, E. S. & Miyawaki, A. Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. USA 98, 3197–3202 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  65. Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nature Biotechnol. 19, 137–141 (2001).
    Article CAS Google Scholar
  66. Nagai, Y. et al. A fluorescent indicator for visualizing cAMP-induced phosphorylation in vivo. Nature Biotechnol. 18, 313–316 (2000).
    Article CAS Google Scholar
  67. Sato, M., Hida, N., Ozawa, T. & Umezawa, Y. Fluorescent indicators for cyclic GMP based on cyclic GMP-dependent protein kinase Iα and green fluorescent proteins. Anal. Chem. 72, 5918–5924 (2000).
    Article CAS PubMed Google Scholar
  68. Honda, A. et al. Spatiotemporal dynamics of guanosine 3′,5′-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc. Natl. Acad. Sci. USA 98, 2437–2442 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  69. Mochizuki, N. et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411, 1065–1068 (2001).
    Article CAS PubMed Google Scholar
  70. Vanderklish, P. W. et al. Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 97, 2253–2258 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  71. Xu, X. et al. Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res. 26, 2034–2035 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  72. Luo, K. Q., Yu, V. C., Pu, Y. & Chang, D. C. Application of the fluorescence resonance energy transfer method for studying the dynamics of caspase-3 activation during UV-induced apoptosis in living HeLa cells. Biochem. Biophys. Res. Commun. 283, 1054–1060 (2001).
    Article CAS PubMed Google Scholar
  73. Day, R. N. Visualization of Pit-1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy. Mol. Endocrinol. 12, 1410–1419 (1998).
    Article CAS PubMed Google Scholar
  74. Day, R. N., Periasamy, A. & Schaufele, F. Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods 25, 4–18 (2001).
    Article CAS PubMed Google Scholar
  75. Zaccolo, M. et al. A genetically encoded, fluorescent indicator for cyclic AMP in living cells. Nature Cell Biol. 2, 25–29 (2000).
    Article CAS PubMed Google Scholar
  76. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).
    Article CAS PubMed Google Scholar
  77. Falk, M. M. & Lauf, U. High resolution, fluorescence deconvolution microscopy and tagging with the autofluorescent tracers CFP, GFP and YFP to study the structural composition of gap junctions in living cells. Microsc. Res. Tech. 52, 251–262 (2001).
    Article CAS PubMed Google Scholar
  78. Straub, M., Lodemann, P., Holroyd, P., Jahn, R. & Hell, S. W. Live cell imaging by multifocal multiphoton microscopy. Eur. J. Cell Biol. 79, 726–734 (2000).
    Article CAS PubMed Google Scholar
  79. Sako, Y., Minoghchi, S. & Yanagida, T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nature Cell Biol. 2, 168–172 (2000).
    Article CAS PubMed Google Scholar
  80. Lansford, R., Bearman, G. & Fraser, S. E. Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy. J. Biomed. Opt. 6, 311–318 (2001).
    Article CAS PubMed Google Scholar
  81. Khatchatouriants, A., Lewis, A., Rothman, Z., Loew, L. & Treinin, M. GFP is a selective non-linear optical sensor of electrophysiological processes in Caenorhabditis elegans. Biophys. J. 79, 2345–2352 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  82. Sakai, R., Repunte-Canonigo, V., Raj, C. D. & Knopfel, T. Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur. J. Neurosci. 13, 2314–2318 (2001).
    Article CAS PubMed Google Scholar

Download references