Actin restricts FcɛRI diffusion and facilitates antigen-induced receptor immobilization (original) (raw)

References

  1. Dustin, M. L. & Cooper, J. A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nature Immunol. 1, 23–29 (2000).
    Article CAS Google Scholar
  2. Lidke, D. S., Lidke, K. A., Rieger, B., Jovin, T. M. & Arndt-Jovin, D. J. Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors. J. Cell. Biol. 4, 619–626 (2005).
    Article Google Scholar
  3. Zhang, J., et al. Characterizing the topography of membrane receptors and signaling molecules from spatial patterns obtained using nanometer-scale electron-dense probes and electron microscopy. Micron 1, 14–34 (2006).
    Article Google Scholar
  4. Boniface, J. J., et al. Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands [corrected]. Immunity 4, 459–466 (1998).
    Article Google Scholar
  5. Kraft, S. & Kinet, J. P. New developments in FcɛRI regulation, function and inhibition. Nature Rev. Immunol. 5, 365–378 (2007).
    Article Google Scholar
  6. Thyagarajan, R., Arunkumar, N. & Song, W. Polyvalent antigens stabilize B cell antigen receptor surface signaling microdomains. J. Immunol. 12, 6099–6106 (2003).
    Article Google Scholar
  7. Kusumi, A., Ike, H., Nakada, C., Murase, K. & Fujiwara, T. Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Semin. Immunol. 1, 3–21 (2005).
    Article Google Scholar
  8. Murase, K., et al. Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys. J. 6, 4075–4093 (2004).
    Article Google Scholar
  9. Ritchie, K., et al. Detection of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys. J. 3, 2266–2277 (2005).
    Article Google Scholar
  10. Saxton, M. J. & Jacobson, K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct., 373–399 (1997).
  11. Singer, S. & Nicolson, G. The fluid mosaic model of the structure of cell membranes. Science 4023, 720–731 (1972).
    Article Google Scholar
  12. Jacobson, K., Sheets, E. D. & Simson, R. Revisiting the fluid mosaic model of membranes. Science 5216, 1441–1442 (1995).
    Article Google Scholar
  13. Kusumi, A., et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct., 351–378 (2005).
  14. Morone, N., et al. Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J. Cell. Biol. 6, 851–862 (2006).
    Article Google Scholar
  15. Douglass, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein–protein networks that exclude or trap signaling molecules in T cells. Cell 6, 937–950. (2005).
    Article Google Scholar
  16. Draber, P. & Draberova, L. Lipid rafts in mast cell signaling. Mol. Immunol. 16–18, 1247–1252 (2002).
  17. Frankel, D. J., et al. Revealing the topography of cellular membrane domains by combined atomic force microscopy/fluorescence imaging. Biophys. J. 7, 2404–2413 (2006).
    Article Google Scholar
  18. Lillemeier, B. F., Pfeiffer, J. R., Surviladze, Z., Wilson, B. S. & Davis, M. M. Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc. Natl Acad. Sci. USA. 50, 18992–18997 (2006).
    Article Google Scholar
  19. Garman, S. C., Wurzburg, B. A., Tarchevskaya, S. S., Kinet, J. P. & Jardetzky, T. S. Structure of the Fc fragment of human IgE bound to its high-affinity receptor FcɛRI α. Nature 6793, 259–266. (2000).
    Article Google Scholar
  20. Metzger, H. The interaction of IgE with rat basophilic leukemia cells. II. Quantitative aspects of the binding reaction. J. Exp. Med. 6, 1676–1695 (1974).
    Google Scholar
  21. Hartwig, J. H. & DeSisto, M. The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J. Cell. Biol. 3, 407–425 (1991).
    Article Google Scholar
  22. Ortega, E., Schweitzer-Stenner, R. & Pecht, I. Possible orientational constraints determine secretory signals induced by aggregation of IgE receptors on mast cells. EMBO J. 13, 4101–4109 (1988).
    Article Google Scholar
  23. Giepmans, B. N., Deerinck, T. J., Smarr, B. L., Jones, Y. Z. & Ellisman, M. H. Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots. Nature Methods 10, 743–749. (2005).
    Article Google Scholar
  24. Wilson, B. S., Pfeiffer, J. R. & Oliver, J. M. Observing FcɛRI signaling from the inside of the mast cell membrane. J. Cell. Biol. 5, 1131–1142 (2000).
    Article Google Scholar
  25. Barisas, B. G., et al. Compartmentalization of the Type I Fcɛ receptor and MAFA on mast cell membranes. Biophys. Chem. 1–3, 209–217 (2007).
  26. Feder, T. J., Brust-Mascher, I., Slattery, J. P., Baird, B. & Webb, W. W. Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys. J. 6, 2767–2773 (1996).
    Article Google Scholar
  27. Suzuki, K., Ritchie, K., Kajikawa, E., Fujiwara, T. & Kusumi, A. Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys. J. 5, 3659–3680 (2005).
    Article Google Scholar
  28. Pyenta, P., Schwille, P., Webb, W. W., Holowka, D. & Baird, B. Lateral diffusion of membrane lipid-anchored probes before and after aggregation of cell surface IgE-receptors. J. Phys. Chem. A, 107, 8310–8318 (2003).
    Article CAS Google Scholar
  29. Schlessinger, J., Webb, W. W., Elson, E. L. & Metzger, H. Lateral motion and valence of Fc receptors on rat peritoneal mast cells. Nature 5586, 550–552 (1976).
    Article Google Scholar
  30. Thomas, J. L., Feder, T. J. & Webb, W. W. Effects of protein concentration on IgE receptor mobility in rat basophilic leukemia cell plasma membranes. Biophys. J. 5, 1402–1412 (1992).
    Article Google Scholar
  31. Daumas, F., et al. Confined diffusion without fences of a g-protein-coupled receptor as revealed by single particle tracking. Biophys. J. 1, 356–366 (2003).
    Article Google Scholar
  32. Jacquier, V., Prummer, M., Segura, J. M., Pick, H. & Vogel, H. Visualizing odorant receptor trafficking in living cells down to the single-molecule level. Proc. Natl Acad. Sci. USA, (2006).
  33. Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 5, 2021–2040 (1993).
    Article Google Scholar
  34. Pfeiffer, J. R. & Oliver, J. M. Tyrosine kinase-dependent assembly of actin plaques linking Fc-ɛ-R1 crosslinking to increased cell substrate adhesion in Rbl-2h3 tumor mast-cells. J. Immunol. 1, 270–279 (1994).
    Google Scholar
  35. Destainville, N. & Salome, L. Quantification and correction of systematic errors due to detector time-averaging in single-molecule tracking experiments. Biophys. J. 2, L17–L19 (2006).
    Article Google Scholar
  36. Frigeri, L. & Apgar, J. R. The role of actin microfilaments in the downregulation of the degranulation response in RBL-2H3 mast cells. J. Immunol. 4, 2243–2250. (1999).
    Google Scholar
  37. Menon, A. K., Holowka, D., Webb, W. W. & Baird, B. Cross-linking of receptor-bound IgE to aggregates larger than dimers leads to rapid immobilization. J. Cell. Biol. 2, 541–550 (1986).
    Article Google Scholar
  38. Dahl, S. C., Geib, R. W., Fox, M. T., Edidin, M. & Branton, D. Rapid capping in α-spectrin-deficient MEL cells from mice afflicted with hereditary hemolytic anemia. J. Cell. Biol. 5, 1057–1065 (1994).
    Article Google Scholar
  39. Tang, Q. & Edidin, M. Lowering the barriers to random walks on the cell surface. Biophys. J. 1, 400–407 (2003).
    Article Google Scholar
  40. Pike, L. J. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J. Lipid Res. 7, 1597–1598 (2006).
    Article Google Scholar
  41. Viola, A. & Gupta, N. Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins. Nature Rev. Immunol. 11, 889–896 (2007).
    Article Google Scholar
  42. Mao, S. Y., Varin-Blank, N., Edidin, M. & Metzger, H. Immobilization and internalization of mutated IgE receptors in transfected cells. J. Immunol. 3, 958–966 (1991).
    Google Scholar
  43. Dahan, M., et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 5644, 442–445 (2003).
    Article Google Scholar
  44. Liu, F. T., et al. Monoclonal dinitrophenyl-specific murine IgE antibody: preparation, isolation, and characterization. J. Immunol. 6, 2728–2737 (1980).
    Google Scholar
  45. Arndt-Jovin, D. J., et al. In vivo cell imaging with semiconductor quantum dots and noble-metal nanodots. Proc. SPIE, 6096, 1–10 (2006).
    Google Scholar
  46. Martin, D. S., Forstner, M. B. & Kas, J. A. Apparent subdiffusion inherent to single particle tracking. Biophys. J. 4, 2109–2117 (2002).
    Article Google Scholar

Download references