A molecular network for de novo generation of the apical surface and lumen (original) (raw)
Bryant, D. M. & Mostov, K. E. From cells to organs: building polarized tissue. Nat. Rev. Mol. Cell Biol.9, 887–901 (2008). ArticleCAS Google Scholar
Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol.10, 513–525 (2009). ArticleCAS Google Scholar
He, B. & Guo, W. The exocyst complex in polarized exocytosis. Curr. Opin. Cell Biol.21, 537–542 (2009). ArticleCAS Google Scholar
Goldstein, B. & Macara, I. G. The PAR proteins: fundamental players in animal cell polarization. Dev. Cell.13, 609–622 (2007). ArticleCAS Google Scholar
Meder, D., Shevchenko, A., Simons, K. & Fullekrug, J. Gp135/podocalyxin and NHERF-2 participate in the formation of a preapical domain during polarization of MDCK cells. J. Cell Biol.168, 303–313 (2005). ArticleCAS Google Scholar
Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell128, 383–397 (2007). ArticleCAS Google Scholar
Ferrari, A., Veligodskiy, A., Berge, U., Lucas, M. S. & Kroschewski, R. ROCK-mediated contractility, tight junctions and channels contribute to the conversion of a preapical patch into apical surface during isochoric lumen initiation. J. Cell Sci.121, 3649–3663 (2008). ArticleCAS Google Scholar
Casanova, J. E. et al. Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol. Biol. Cell10, 47–61 (1999). ArticleCAS Google Scholar
Shaye, D. D., Casanova, J. & Llimargas, M. Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nat. Cell Biol.10, 964–970 (2008). ArticleCAS Google Scholar
Li, B. X., Satoh, A. K. & Ready, D. F. Myosin V, Rab11 and dRip11 direct apical secretion and cellular morphogenesis in developing Drosophila photoreceptors. J. Cell Biol.177, 659–669 (2007). ArticleCAS Google Scholar
Desclozeaux, M. et al. Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis. Am. J. Physiol. Cell Physiol.295, C545–556 (2008). ArticleCAS Google Scholar
Knodler, A. et al. Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc. Natl Acad. Sci. USA107, 6346–6351 (2010). ArticleCAS Google Scholar
Yoshimura, S., Egerer, J., Fuchs, E., Haas, A. K. & Barr, F. A. Functional dissection of Rab GTPases involved in primary cilium formation. J. Cell Biol.178, 363–369 (2007). ArticleCAS Google Scholar
Wu, S., Mehta, S. Q., Pichaud, F., Bellen, H. J. & Quiocho, F. A. Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat. Struct. Mol. Biol.12, 879–885 (2005). ArticleCAS Google Scholar
Oztan, A. et al. Exocyst requirement for endocytic traffic directed toward the apical and basolateral poles of polarized MDCK cells. Mol. Biol. Cell18, 3978–3992 (2007). ArticleCAS Google Scholar
Zuo, X., Guo, W. & Lipschutz, J. H. The exocyst protein Sec10 is necessary for primary ciliogenesis and cystogenesis in vitro. Mol. Biol. Cell20, 2522–2529 (2009). ArticleCAS Google Scholar
Lalli, G. RalA and the exocyst complex influence neuronal polarity through PAR-3 and aPKC. J. Cell Sci.122, 1499–1506 (2009). ArticleCAS Google Scholar
Hayes, M. J. & Moss, S. E. Annexin 2 has a dual role as regulator and effector of v-Src in cell transformation. J. Biol. Chem.284, 10202–10210 (2009). ArticleCAS Google Scholar
Zobiack, N., Rescher, U., Ludwig, C., Zeuschner, D. & Gerke, V. The annexin 2/S100A10 complex controls the distribution of transferrin receptor-containing recycling endosomes. Mol. Biol. Cell14, 4896–4908 (2003). ArticleCAS Google Scholar
Rodriguez-Fraticelli, A. E. et al. The Cdc42 GEF intersectin 2 controls mitotic spindle orientation to form the lumen during epithelial morphogenesis. J. Cell Biol.189, 725–738 (2010). ArticleCAS Google Scholar
Qin, Y., Meisen, W. H., Hao, Y. & Macara, I. G. Tuba, a Cdc42 GEF, is required for polarized spindle orientation during epithelial cyst formation. J. Cell Biol.189, 661–669 (2010). ArticleCAS Google Scholar
Lubarsky, B. & Krasnow, M. A. Tube morphogenesis. Making and shaping biological tubes. Cell112, 19–28 (2003). ArticleCAS Google Scholar
Bagnat, M., Cheung, I. D., Mostov, K. E. & Stainier, D. Y. Genetic control of single lumen formation in the zebrafish gut. Nat. Cell Biol.9, 954–960 (2007). ArticleCAS Google Scholar
Ortiz, D., Medkova, M., Walch-Solimena, C. & Novick, P. Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J. Cell Biol.157, 1005–1015 (2002). ArticleCAS Google Scholar
Schluter, M. A. et al. Trafficking of Crumbs3 during cytokinesis is crucial for lumen formation. Mol. Biol. Cell20, 4652–4663 (2009). ArticleCAS Google Scholar
Morais-de-Sa, E., Mirouse, V. & St Johnston, D. aPKC phosphorylation of Bazooka defines the apical/lateral border in Drosophila epithelial cells. Cell141, 509–523 (2010). ArticleCAS Google Scholar
Walther, R. F. & Pichaud, F. Crumbs/DaPKC-dependent apical exclusion of Bazooka promotes photoreceptor polarity remodeling. Curr. Biol.20, 1065–1074 (2010). ArticleCAS Google Scholar
Joberty, G., Petersen, C., Gao, L. & Macara, I. G. The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat. Cell Biol.2, 531–539 (2000). ArticleCAS Google Scholar
Jaffe, A. B., Kaji, N., Durgan, J. & Hall, A. Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis. J. Cell. Biol.183, 625–633 (2008). ArticleCAS Google Scholar
Harris, K. P. & Tepass, U. Cdc42 and vesicle trafficking in polarized cells. Traffic11, 1272–1279 (2010). ArticleCAS Google Scholar
Balklava, Z., Pant, S., Fares, H. & Grant, B. D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat. Cell Biol.9, 1066–1073 (2007). ArticleCAS Google Scholar
Shivas, J. M., Morrison, H. A., Bilder, D. & Skop, A. R. Polarity and endocytosis: reciprocal regulation. Trends Cell Biol.20, 445–452 (2010). ArticleCAS Google Scholar
Hogan, B. L. & Kolodziej, P. A. Organogenesis: molecular mechanisms of tubulogenesis. Nat. Rev. Genet.3, 513–523 (2002). ArticleCAS Google Scholar
Brignoni, M. et al. Exocytosis of vacuolar apical compartment (VAC) in Madin-Darby canine kidney epithelial cells: cAMP is involved as second messenger. Exp. Cell. Res.205, 171–178 (1993). ArticleCAS Google Scholar
Matheson, J., Yu, X., Fielding, A. B. & Gould, G. W. Membrane traffic in cytokinesis. Biochem. Soc. Trans.33, 1290–1294 (2005). ArticleCAS Google Scholar
Zhang, H., Squirrell, J. M. & White, J. G. RAB-11 permissively regulates spindle alignment by modulating metaphase microtubule dynamics in Caenorhabditis elegans early embryos. Mol. Biol. Cell19, 2553–2565 (2008). ArticleCAS Google Scholar
Pohl, C. & Jentsch, S. Final stages of cytokinesis and midbody ring formation are controlled by BRUCE. Cell132, 832–845 (2008). ArticleCAS Google Scholar
Horne-Badovinac, S. et al. Positional cloning of heart and soul reveals multiple roles for PKC lambda in zebrafish organogenesis. Curr. Biol.11, 1492–1502 (2001). ArticleCAS Google Scholar
Zheng, Z. et al. LGN regulates mitotic spindle orientation during epithelial morphogenesis. J. Cell Biol.189, 275–288 (2010). ArticleCAS Google Scholar
Yu, W. et al. Formation of cysts by alveolar type II cells in three-dimensional culture reveals a novel mechanism for epithelial morphogenesis. Mol. Biol. Cell18, 1693–1700 (2007). ArticleCAS Google Scholar
Liu, K. D. et al. Rac1 is required for reorientation of polarity and lumen formation through a PI 3-kinase-dependent pathway. Am. J. Physiol. Renal Physiol.293, F1633–F1640 (2007). ArticleCAS Google Scholar
Tanimizu, N., Miyajima, A. & Mostov, K. E. Liver progenitor cells fold up a cell monolayer into a double-layered structure during tubular morphogenesis. Mol. Biol. Cell.20, 2486–2494 (2009). ArticleCAS Google Scholar
Wang, A. Z., Wang, J. C., Ojakian, G. K. & Nelson, W. J. Determinants of apical membrane formation and distribution in multicellular epithelial MDCK cysts. Am. J. Physiol.267, C473–C481 (1994). ArticleCAS Google Scholar
Schuck, S., Manninen, A., Honsho, M., Fullekrug, J. & Simons, K. Generation of single and double knockdowns in polarized epithelial cells by retrovirus-mediated RNA interference. Proc. Natl Acad. Sci. USA101, 4912–4917 (2004). ArticleCAS Google Scholar
Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell124, 1283–1298 (2006). ArticleCAS Google Scholar
Sfakianos, J. et al. Par3 functions in the biogenesis of the primary cilium in polarized epithelial cells. J. Cell Biol.179, 1133–1140 (2007). ArticleCAS Google Scholar
Ory, D. S., Neugeboren, B. A. & Mulligan, R. C. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl Acad. Sci. USA93, 11400–11406 (1996). ArticleCAS Google Scholar
Hattula, K., Furuhjelm, J., Arffman, A. & Peranen, J. A Rab8-specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport. Mol. Biol. Cell13, 3268–3280 (2002). ArticleCAS Google Scholar
Kreitzer, G. et al. Three-dimensional analysis of post-Golgi carrier exocytosis in epithelial cells. Nat. Cell Biol.5, 126–136 (2003). ArticleCAS Google Scholar
Mangravite, L. M., Lipschutz, J. H., Mostov, K. E. & Giacomini, K. M. Localization of GFP-tagged concentrative nucleoside transporters in a renal polarized epithelial cell line. Am. J. Physiol. Renal. Physiol.280, F879–F885 (2001). ArticleCAS Google Scholar
Kreis, T. E. Microinjected antibodies against the cytoplasmic domain of vesicular stomatitis virus glycoprotein block its transport to the cell surface. Embo J.5, 931–941 (1986). ArticleCAS Google Scholar
Brown, P. S. et al. Definition of distinct compartments in polarized Madin-Darby canine kidney (MDCK) cells for membrane-volume sorting, polarized sorting and apical recycling. Traffic1, 124–140 (2000). ArticleCAS Google Scholar
Sato, Y. et al. Asymmetric coiled-coil structure with guanine nucleotide exchange activity. Structure15, 245–252 (2007). ArticleCAS Google Scholar