From cells to organs: building polarized tissue (original) (raw)
O'Brien, L. E., Zegers, M. M. & Mostov, K. E. Building epithelial architecture: insights from three-dimensional culture models. Nature Rev. Mol. Cell Biol.3, 531–537 (2002). ArticleCAS Google Scholar
Lecuit, T. & Le Goff, L. Orchestrating size and shape during morphogenesis. Nature450, 189–192 (2007). ArticleCASPubMed Google Scholar
Alberts, B. Molecular Biology Of The Cell (Garland Science, New York, 2008). Google Scholar
Aijaz, S., Balda, M. S. & Matter, K. Tight junctions: molecular architecture and function. Int. Rev. Cytol.248, 261–298 (2006). ArticleCASPubMed Google Scholar
Shin, K., Fogg, V. C. & Margolis, B. Tight junctions and cell polarity. Annu. Rev. Cell Dev. Biol.22, 207–235 (2006). ArticleCASPubMed Google Scholar
Rafelski, S. M. & Marshall, W. F. Building the cell: design principles of cellular architecture. Nature Rev. Mol. Cell Biol.9, 593–602 (2008). ArticleCAS Google Scholar
Yamada, S. & Nelson, W. J. Synapses: sites of cell recognition, adhesion, and functional specification. Annu. Rev. Biochem.76, 267–294 (2007). ArticleCASPubMedPubMed Central Google Scholar
Iglesias, P. A. & Devreotes, P. N. Navigating through models of chemotaxis. Curr. Opin. Cell Biol.20, 35–40 (2008). ArticleCASPubMed Google Scholar
Deng, W. M. et al. Dystroglycan is required for polarizing the epithelial cells and the oocyte in Drosophila. Development130, 173–184 (2003). ArticleCASPubMed Google Scholar
Yu, W. et al. β1-integrin orients epithelial polarity via Rac1 and laminin. Mol. Biol. Cell16, 433–445 (2005). Outlines, together with references 37 and 38, the importance of ECM–integrin–Rac signalling in the orientation of polarity. ArticleCASPubMedPubMed Central Google Scholar
Kass, L., Erler, J. T., Dembo, M. & Weaver, V. M. Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int. J. Biochem. Cell Biol.39, 1987–1994 (2007). ArticleCASPubMedPubMed Central Google Scholar
Miner, J. H. & Yurchenco, P. D. Laminin functions in tissue morphogenesis. Annu. Rev. Cell Dev. Biol.20, 255–284 (2004). ArticleCASPubMed Google Scholar
Gumbiner, B. M. Regulation of cadherin-mediated adhesion in morphogenesis. Nature Rev. Mol. Cell Biol.6, 622–634 (2005). ArticleCAS Google Scholar
Gurdon, J. B. & Bourillot, P. Y. Morphogen gradient interpretation. Nature413, 797–803 (2001). ArticleCASPubMed Google Scholar
Macara, I. G. Parsing the polarity code. Nature Rev. Mol. Cell Biol.5, 220–231 (2004). ArticleCAS Google Scholar
Wang, Y. & Nathans, J. Tissue/planar cell polarity in vertebrates: new insights and new questions. Development134, 647–658 (2007). ArticleCASPubMed Google Scholar
Yang, J. & Weinberg, R. A. Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell14, 818–829 (2008). ArticleCASPubMed Google Scholar
Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial–mesenchymal transitions. Nature Rev. Mol. Cell Biol.7, 131–142 (2006). ArticleCAS Google Scholar
Vainio, S. & Lin, Y. Coordinating early kidney development: lessons from gene targeting. Nature Rev. Genet.3, 533–543 (2002). ArticleCASPubMed Google Scholar
Debnath, J. & Brugge, J. S. Modelling glandular epithelial cancers in three-dimensional cultures. Nature Rev. Cancer5, 675–688 (2005). ArticleCAS Google Scholar
Leroy, P. & Mostov, K. E. Slug is required for cell survival during partial epithelial–mesenchymal transition of HGF-induced tubulogenesis. Mol. Biol. Cell18, 1943–1952 (2007). ArticleCASPubMedPubMed Central Google Scholar
O'Brien, L. E. et al. ERK and MMPs sequentially regulate distinct stages of epithelial tubule development. Dev. Cell7, 21–32 (2004). References 25 and 26 describe a pEMT event during morphogenesis and its molecular regulation. ArticleCASPubMed Google Scholar
Pacquelet, A. & Rorth, P. Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. J. Cell Biol.170, 803–812 (2005). ArticleCASPubMedPubMed Central Google Scholar
Prasad, M. & Montell, D. J. Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging. Dev. Cell12, 997–1005 (2007). ArticleCASPubMed Google Scholar
Peinado, H., Olmeda, D. & Cano, A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Rev. Cancer7, 415–428 (2007). ArticleCAS Google Scholar
Aigner, K. et al. The transcription factor ZEB1 (δEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene26, 6979–6988 (2007). ArticleCASPubMedPubMed Central Google Scholar
Whiteman, E. L., Liu, C. J., Fearon, E. R. & Margolis, B. The transcription factor snail represses Crumbs3 expression and disrupts apico–basal polarity complexes. Oncogene27, 3875–3879 (2008). References 30 and 31 demonstrate that direct repression of polarity complexes by ZEB and Snail factors modulates EMT. ArticleCASPubMedPubMed Central Google Scholar
De Craene, B. et al. The transcription factor Snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res.65, 6237–6244 (2005). ArticleCASPubMed Google Scholar
Spaderna, S. et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology131, 830–840 (2006). ArticleCASPubMed Google Scholar
Beltran, M. et al. A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial–mesenchymal transition. Genes Dev.22, 756–769 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biol.10, 593–601 (2008). ArticleCASPubMed Google Scholar
Burk, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep.9, 582–589 (2008). References 35 and 36 reveal mutual antagonism between miRNAs and ZEB1 in controlling epithelial differentiation. ArticleCASPubMedPubMed Central Google Scholar
O'Brien, L. E. et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nature Cell Biol.3, 831–838 (2001). ArticleCASPubMed Google Scholar
Pegtel, D. M. et al. The Par–Tiam1 complex controls persistent migration by stabilizing microtubule-dependent front–rear polarity. Curr. Biol.17, 1623–1634 (2007). ArticleCASPubMed Google Scholar
Zegers, M. M., O'Brien, L. E., Yu, W., Datta, A. & Mostov, K. E. Epithelial polarity and tubulogenesis in vitro. Trends Cell Biol.13, 169–176 (2003). ArticleCASPubMed Google Scholar
Adams, S. A., Smith, M. E., Cowley, G. P. & Carr, L. A. Reversal of glandular polarity in the lymphovascular compartment of breast cancer. J. Clin. Pathol.57, 1114–1117 (2004). ArticleCASPubMedPubMed Central Google Scholar
Velling, T., Stefansson, A. & Johansson, S. EGFR and β1 integrins utilize different signaling pathways to activate Akt. Exp. Cell Res.314, 309–316 (2008). ArticleCASPubMed Google Scholar
Halet, G., Viard, P. & Carroll, J. Constitutive PtdIns(3,4,5)P3 synthesis promotes the development and survival of early mammalian embryos. Development135, 425–429 (2008). ArticleCASPubMed Google Scholar
Kovacs, E. M., Ali, R. G., McCormack, A. J. & Yap, A. S. E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J. Biol. Chem.277, 6708–6718 (2002). ArticleCASPubMed Google Scholar
Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol.21, 247–269 (2005). ArticleCASPubMed Google Scholar
Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell128, 383–397 (2007). Shows, together with reference 70, hollowing as a mechanism forde novolumen formation. Also details a role for PtdInsP and polarity complexes in lumen formation. ArticleCASPubMedPubMed Central Google Scholar
Martin-Belmonte, F. et al. Cell-polarity dynamics controls the mechanism of lumen formation in epithelial morphogenesis. Curr. Biol.18, 507–513 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wu, X. et al. Cdc42 is crucial for the establishment of epithelial polarity during early mammalian development. Dev. Dyn.236, 2767–2778 (2007). ArticleCASPubMed Google Scholar
Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell114, 201–214 (2003). ArticleCASPubMed Google Scholar
Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nature Rev. Mol. Cell Biol.8, 633–644 (2007). ArticleCAS Google Scholar
Wong, K., Pertz, O., Hahn, K. & Bourne, H. Neutrophil polarization: spatiotemporal dynamics of RhoA activity support a self-organizing mechanism. Proc. Natl Acad. Sci. USA103, 3639–3644 (2006). ArticleCASPubMedPubMed Central Google Scholar
Garrard, S. M. et al. Structure of Cdc42 in a complex with the GTPase-binding domain of the cell polarity protein, Par6. EMBO J.22, 1125–1133 (2003). ArticleCASPubMedPubMed Central Google Scholar
Anderson, D. C., Gill, J. S., Cinalli, R. M. & Nance, J. Polarization of the C. elegans embryo by RhoGAP-mediated exclusion of PAR-6 from cell contacts. Science320, 1771–1774 (2008). ArticleCASPubMedPubMed Central Google Scholar
Barrett, K., Leptin, M. & Settleman, J. The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell91, 905–915 (1997). ArticleCASPubMed Google Scholar
Brouns, M. R., Matheson, S. F. & Settleman, J. p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation. Nature Cell Biol.3, 361–367 (2001). ArticleCASPubMed Google Scholar
Hacker, U. & Perrimon, N. DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila. Genes Dev.12, 274–284 (1998). ArticleCASPubMedPubMed Central Google Scholar
Haigo, S. L., Hildebrand, J. D., Harland, R. M. & Wallingford, J. B. Shroom induces apical constriction and is required for hingepoint formation during neural tube closure. Curr. Biol.13, 2125–2137 (2003). ArticleCASPubMed Google Scholar
Kolsch, V., Seher, T., Fernandez-Ballester, G. J., Serrano, L. & Leptin, M. Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2. Science315, 384–386 (2007). ArticlePubMedCAS Google Scholar
Nikolaidou, K. K. & Barrett, K. A Rho GTPase signaling pathway is used reiteratively in epithelial folding and potentially selects the outcome of Rho activation. Curr. Biol.14, 1822–1826 (2004). References 54–59 collectively define crucial roles for apical activation and basal inactivation of RhoA by GEFs and GAPs, respectively, in tissue morphogenesis. ArticleCASPubMed Google Scholar
Zhang, H. & Macara, I. G. The PAR-6 polarity protein regulates dendritic spine morphogenesis through p190 RhoGAP and the Rho GTPase. Dev. Cell14, 216–226 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Nakayama, M. et al. Rho-kinase phosphorylates PAR-3 and disrupts PAR complex formation. Dev. Cell14, 205–215 (2008). ArticleCASPubMed Google Scholar
Balklava, Z., Pant, S., Fares, H. & Grant, B. D. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nature Cell Biol.9, 1066–1073 (2007). ArticleCASPubMed Google Scholar
Lubarsky, B. & Krasnow, M. A. Tube morphogenesis: making and shaping biological tubes. Cell112, 19–28 (2003). ArticleCASPubMed Google Scholar
Hogan, B. L. & Kolodziej, P. A. Organogenesis: molecular mechanisms of tubulogenesis. Nature Rev. Genet.3, 513–523 (2002). ArticleCASPubMed Google Scholar
Debnath, J. et al. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell111, 29–40 (2002). ArticleCASPubMed Google Scholar
Mailleux, A. A. et al. BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms. Dev. Cell12, 221–234 (2007). References 47, 65 and 66 detail cavitation as a mechanism for lumen formation in 3D culture andin vivo. ArticleCASPubMedPubMed Central Google Scholar
Bilder, D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev.18, 1909–1925 (2004). ArticleCASPubMed Google Scholar
Aranda, V. et al. Par6–aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nature Cell Biol.8, 1235–1245 (2006). ArticleCASPubMed Google Scholar
Davis, G. E. & Camarillo, C. W. An α2β1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp. Cell Res.224, 39–51 (1996). ArticleCASPubMed Google Scholar
Kamei, M. et al. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature442, 453–456 (2006). ArticleCASPubMed Google Scholar
Blum, Y. et al. Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev. Biol.316, 312–322 (2008). ArticleCASPubMed Google Scholar
Horne-Badovinac, S. et al. Positional cloning of heart and soul reveals multiple roles for PKCλ in zebrafish organogenesis. Curr. Biol.11, 1492–1502 (2001). ArticleCASPubMed Google Scholar
Kim, M., Datta, A., Brakeman, P., Yu, W. & Mostov, K. E. Polarity proteins PAR6 and aPKC regulate cell death through GSK-3β in 3D epithelial morphogenesis. J. Cell Sci.120, 2309–2317 (2007). ArticleCASPubMed Google Scholar
Medioni, C., Astier, M., Zmojdzian, M., Jagla, K. & Sémériva, M. Genetic control of cell morphogenesis during Drosophila melanogaster cardiac tube formation. J. Cell Biol.182, 249–261 (2008). ArticleCASPubMedPubMed Central Google Scholar
Santiago-Martínez, E., Saplop, N. H., Patel, R. & Kramer, S. G. Repulsion by Slit and Roundabout prevents Shotgun/E-cadherin-mediated cell adhesion during Drosophila heart tube lumen formation. J. Cell Biol.182, 241–248 (2008). ArticlePubMedPubMed Central Google Scholar
Meder, D., Shevchenko, A., Simons, K. & Fullekrug, J. Gp135/podocalyxin and NHERF-2 participate in the formation of a preapical domain during polarization of MDCK cells. J. Cell Biol.168, 303–313 (2005). ArticleCASPubMedPubMed Central Google Scholar
Metzger, R. J., Klein, O. D., Martin, G. R. & Krasnow, M. A. The branching programme of mouse lung development. Nature453, 745–750 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ghabrial, A., Luschnig, S., Metzstein, M. M. & Krasnow, M. A. Branching morphogenesis of the Drosophila tracheal system. Annu. Rev. Cell Dev. Biol.19, 623–647 (2003). ArticleCASPubMed Google Scholar
Lee, M., Lee, S., Zadeh, A. D. & Kolodziej, P. A. Distinct sites in E-cadherin regulate different steps in Drosophila tracheal tube fusion. Development130, 5989–5999 (2003). ArticleCASPubMed Google Scholar
Shaye, D. D., Casanova, J. & Llimargas, M. Modulation of intracellular trafficking regulates cell intercalation in the Drosophila trachea. Nature Cell Biol.10, 964–970 (2008). ArticleCASPubMed Google Scholar
Affolter, M. & Caussinus, E. Tracheal branching morphogenesis in Drosophila: new insights into cell behaviour and organ architecture. Development135, 2055–2064 (2008). ArticleCASPubMed Google Scholar
Bokel, C., Prokop, A. & Brown, N. H. Papillote and Piopio: Drosophila ZP-domain proteins required for cell adhesion to the apical extracellular matrix and microtubule organization. J. Cell Sci.118, 633–642 (2005). ArticlePubMedCAS Google Scholar
Jazwinska, A., Ribeiro, C. & Affolter, M. Epithelial tube morphogenesis during Drosophila tracheal development requires Piopio, a luminal ZP protein. Nature Cell Biol.5, 895–901 (2003). References 82, 83, 94 and 95 describe roles for different types of apical ECM in the formation of luminal structures inD. melanogastertissues. ArticleCASPubMed Google Scholar
Ewald, A. J., Brenot, A., Duong, M., Chan, B. S. & Werb, Z. Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev. Cell14, 570–581 (2008). Describesin vitrobranching of mammary organoids through a multilayered epithelial state. ArticleCASPubMedPubMed Central Google Scholar
Boletta, A. & Germino, G. G. Role of polycystins in renal tubulogenesis. Trends Cell Biol.13, 484–492 (2003). ArticleCASPubMed Google Scholar
Roy-Chaudhury, P. & Lee, T. C. Vascular stenosis: biology and interventions. Curr. Opin. Nephrol. Hypertens.16, 516–522 (2007). ArticlePubMed Google Scholar
Bagnat, M., Cheung, I. D., Mostov, K. E. & Stainier, D. Y. Genetic control of single lumen formation in the zebrafish gut. Nature Cell Biol.9, 954–960 (2007). Demonstrates, together with references 90 and 134,in vivoroles for Na+/K+-ATPase, septate junctions and TJs in lumen formation. ArticleCASPubMed Google Scholar
Yap, A. S., Stevenson, B. R., Armstrong, J. W., Keast, J. R. & Manley, S. W. Thyroid epithelial morphogenesis in vitro: a role for bumetanide-sensitive Cl-secretion during follicular lumen development. Exp. Cell Res.213, 319–326 (1994). ArticleCASPubMed Google Scholar
Yang, B., Sonawane, N. D., Zhao, D., Somlo, S. & Verkman, A. S. Small-molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. J. Am. Soc. Nephrol.19, 1300–1310 (2008). ArticleCASPubMedPubMed Central Google Scholar
Paul, S. M., Palladino, M. J. & Beitel, G. J. A pump-independent function of the Na, K-ATPase is required for epithelial junction function and tracheal tube-size control. Development134, 147–155 (2007). ArticleCASPubMed Google Scholar
Wu, V. M., Schulte, J., Hirschi, A., Tepass, U. & Beitel, G. J. Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control. J. Cell Biol.164, 313–323 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tsarouhas, V. et al. Sequential pulses of apical epithelial secretion and endocytosis drive airway maturation in Drosophila. Dev. Cell13, 214–225 (2007). References 92 and 93 characterize crucial roles for apical secretion and endocytosis in lumen expansion and morphogenesis. ArticleCASPubMed Google Scholar
Husain, N. et al. The agrin/perlecan-related protein eyes shut is essential for epithelial lumen formation in the Drosophila retina. Dev. Cell11, 483–493 (2006). ArticleCASPubMed Google Scholar
Kerman, B. E., Cheshire, A. M., Myat, M. M. & Andrew, D. J. Ribbon modulates apical membrane during tube elongation through Crumbs and Moesin. Dev. Biol.320, 278–288 (2008). ArticleCASPubMedPubMed Central Google Scholar
Myat, M. M. & Andrew, D. J. Epithelial tube morphology is determined by the polarized growth and delivery of apical membrane. Cell111, 879–891 (2002). ArticleCASPubMed Google Scholar
Li, B. X., Satoh, A. K. & Ready, D. F. Myosin V, Rab11, and dRip11 direct apical secretion and cellular morphogenesis in developing Drosophila photoreceptors. J. Cell Biol.177, 659–669 (2007). ArticleCASPubMedPubMed Central Google Scholar
American Cancer Society. Cancer Facts & Figs 2008 (American Cancer Society, Atlanta, 2008).
Lee, M. & Vasioukhin, V. Cell polarity and cancer-cell and tissue polarity as a non-canonical tumor suppressor. J. Cell Sci.121, 1141–1150 (2008). ArticleCASPubMed Google Scholar
Fausto, N., Campbell, J. S. & Riehle, K. J. Liver regeneration. Hepatology43, S45–S53 (2006). ArticleCASPubMed Google Scholar
Liano, F. & Pascual, J. Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid acute renal failure study group. Kidney Int.50, 811–818 (1996). ArticleCASPubMed Google Scholar
Matthay, M. A. & Zimmerman, G. A. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am. J. Respir. Cell Mol. Biol.33, 319–327 (2005). ArticleCASPubMedPubMed Central Google Scholar
Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell2, 284–291 (2008). ArticleCASPubMed Google Scholar
Venkatachalam, M. A., Bernard, D. B., Donohoe, J. F. & Levinsky, N. G. Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2, and S3 segments. Kidney Int.14, 31–49 (1978). ArticleCASPubMed Google Scholar
Gibson, M. C. & Perrimon, N. Apicobasal polarization: epithelial form and function. Curr. Opin. Cell Biol.15, 747–752 (2003). ArticleCASPubMed Google Scholar
Plant, P. J. et al. A polarity complex of mPar-6 and atypical PKC binds, phosphorylates and regulates mammalian Lgl. Nature Cell Biol.5, 301–308 (2003). ArticleCASPubMed Google Scholar
Koshland, D. E. Switches, thresholds and ultrasensitivity. Trends Biochem. Sci.12, 225–229 (1987). ArticleCAS Google Scholar
Lee, H. S., Nishanian, T. G., Mood, K., Bong, Y. S. & Daar, I. O. EphrinB1 controls cell–cell junctions through the Par polarity complex. Nature Cell Biol.10, 979–986 (2008). ArticleCASPubMed Google Scholar
Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science307, 1603–1609 (2005). ArticleCASPubMed Google Scholar
Humbert, P. O., Dow, L. E. & Russell, S. M. The Scribble and Par complexes in polarity and migration: friends or foes? Trends Cell Biol.16, 622–630 (2006). ArticleCASPubMed Google Scholar
Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature443, 651–657 (2006). ArticleCASPubMed Google Scholar
Srinivasan, S. et al. Rac and Cdc42 play distinct roles in regulating PI(3,4,5)P3 and polarity during neutrophil chemotaxis. J. Cell Biol.160, 375–385 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pinal, N. et al. Regulated and polarized PtdIns(3,4,5)P3 accumulation is essential for apical membrane morphogenesis in photoreceptor epithelial cells. Curr. Biol.16, 140–149 (2006). ArticleCASPubMed Google Scholar
Yu, W. et al. Hepatocyte growth factor switches orientation of polarity and mode of movement during morphogenesis of multicellular epithelial structures. Mol. Biol. Cell14, 748–763 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pilot, F., Philippe, J. M., Lemmers, C. & Lecuit, T. Spatial control of actin organization at adherens junctions by a synaptotagmin-like protein Btsz. Nature442, 580–584 (2006). ArticleCASPubMed Google Scholar
von Stein, W., Ramrath, A., Grimm, A., Muller-Borg, M. & Wodarz, A. Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development132, 1675–1686 (2005). ArticleCASPubMed Google Scholar
Feng, W., Wu, H., Chan, L. N. & Zhang, M. PAR-3-mediated junctional localization of the lipid phosphatase PTEN is required for cell polarity establishment. J. Biol. Chem.283, 23440–23449 (2008). References 118 and 119 demonstrate the direct interaction of PAR-3 with PTEN, revealing regulation of PtdInsP asymmetry by the PAR complex. ArticleCASPubMed Google Scholar
Takahama, S., Hirose, T. & Ohno, S. aPKC restricts the basolateral determinant PtdIns(3,4,5)P3 to the basal region. Biochem. Biophys. Res. Commun.368, 249–255 (2008). ArticleCASPubMed Google Scholar
Gassama-Diagne, A. et al. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nature Cell Biol.8, 963–970 (2006). ArticleCASPubMed Google Scholar
Kierbel, A. et al. Pseudomonas aeruginosa exploits a PIP3-dependent pathway to transform apical into basolateral membrane. J. Cell Biol.177, 21–27 (2007). ArticleCASPubMedPubMed Central Google Scholar
Liu, J., Zuo, X., Yue, P. & Guo, W. Phosphatidylinositol 4,5-bisphosphate mediates the targeting of the exocyst to the plasma membrane for exocytosis in mammalian cells. Mol. Biol. Cell18, 4483–4492 (2007). Demonstrates, together with references 46 and 122, that apical PtdIns(4,5)P2and basolateral PtdIns(3,4,5)P3are key determinants of epithelial polarity. ArticleCASPubMedPubMed Central Google Scholar
Gutierrez-Barrera, A. M., Menter, D. G., Abbruzzese, J. L. & Reddy, S. A. Establishment of three-dimensional cultures of human pancreatic duct epithelial cells. Biochem. Biophys. Res. Commun.358, 698–703 (2007). ArticleCASPubMedPubMed Central Google Scholar
Webber, M. M., Bello, D., Kleinman, H. K. & Hoffman, M. P. Acinar differentiation by non-malignant immortalized human prostatic epithelial cells and its loss by malignant cells. Carcinogenesis18, 1225–1231 (1997). ArticleCASPubMed Google Scholar
Yu, W. et al. Formation of cysts by alveolar type II cells in three-dimensional culture reveals a novel mechanism for epithelial morphogenesis. Mol. Biol. Cell18, 1693–1700 (2007). ArticleCASPubMedPubMed Central Google Scholar
Montesano, R., Schaller, G. & Orci, L. Induction of epithelial tubular morphogenesis in vitro by fibroblast-derived soluble factors. Cell66, 697–711 (1991). ArticleCASPubMed Google Scholar
Pollack, A. L., Runyan, R. B. & Mostov, K. E. Morphogenetic mechanisms of epithelial tubulogenesis: MDCK cell polarity is transiently rearranged without loss of cell–cell contact during scatter factor/hepatocyte growth factor-induced tubulogenesis. Dev. Biol.204, 64–79 (1998). ArticleCASPubMed Google Scholar
Grant, M. R., Mostov, K. E., Tlsty, T. D. & Hunt, C. A. Simulating properties of in vitro epithelial cell morphogenesis. PLoS Comput. Biol.2, e129 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Wang, X., Kumar, R., Navarre, J., Casanova, J. E. & Goldenring, J. R. Regulation of vesicle trafficking in Madin–Darby canine kidney cells by Rab11a and Rab25. J. Biol. Chem.275, 29138–29146 (2000). ArticleCASPubMed Google Scholar
Cheng, K. W. et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nature Med.10, 1251–1256 (2004). ArticleCASPubMed Google Scholar
Rehder, D. et al. Junctional adhesion molecule-a participates in the formation of apico–basal polarity through different domains. Exp. Cell Res.312, 3389–3403 (2006). ArticleCASPubMed Google Scholar
Torkko, J. M., Manninen, A., Schuck, S. & Simons, K. Depletion of apical transport proteins perturbs epithelial cyst formation and ciliogenesis. J. Cell Sci.121, 1193–1203 (2008). ArticleCASPubMed Google Scholar
Paul, S. M., Ternet, M., Salvaterra, P. M. & Beitel, G. J. The Na+/K+ ATPase is required for septate junction function and epithelial tube-size control in the Drosophila tracheal system. Development130, 4963–4974 (2003). ArticleCASPubMed Google Scholar
Shin, K., Straight, S. & Margolis, B. PATJ regulates tight junction formation and polarity in mammalian epithelial cells. J. Cell Biol.168, 705–711 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lipschutz, J. H. et al. Exocyst is involved in cystogenesis and tubulogenesis and acts by modulating synthesis and delivery of basolateral plasma membrane and secretory proteins. Mol. Biol. Cell11, 4259–4275 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gobel, V., Barrett, P. L., Hall, D. H. & Fleming, J. T. Lumen morphogenesis in C. elegans requires the membrane-cytoskeleton linker ERM-1. Dev. Cell6, 865–873 (2004). ArticlePubMed Google Scholar
Saotome, I., Curto, M. & McClatchey, A. I. Ezrin is essential for epithelial organization and villus morphogenesis in the developing intestine. Dev. Cell6, 855–864 (2004). ArticleCASPubMed Google Scholar
Beronja, S. et al. Essential function of Drosophila Sec6 in apical exocytosis of epithelial photoreceptor cells. J. Cell Biol.169, 635–646 (2005). ArticleCASPubMedPubMed Central Google Scholar
Liu, X. F., Ohno, S. & Miki, T. Nucleotide exchange factor ECT2 regulates epithelial cell polarity. Cell Signal18, 1604–1615 (2006). ArticleCASPubMed Google Scholar
Jiang, L., Rogers, S. L. & Crews, S. T. The Drosophila Dead end Arf-like3 GTPase controls vesicle trafficking during tracheal fusion cell morphogenesis. Dev. Biol.311, 487–499 (2007). ArticleCASPubMedPubMed Central Google Scholar
Vieira, O. V., Verkade, P., Manninen, A. & Simons, K. FAPP2 is involved in the transport of apical cargo in polarized MDCK cells. J. Cell Biol.170, 521–526 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sato, T. et al. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature448, 366–369 (2007). ArticleCASPubMed Google Scholar
Desclozeaux, M. et al. Active Rab11 and functional recycling endosome are required for E-cadherin trafficking and lumen formation during epithelial morphogenesis. Am. J. Physiol. Cell Physiol.295, C545–C556 (2008). ArticleCASPubMed Google Scholar
Sharma, N., Low, S. H., Misra, S., Pallavi, B. & Weimbs, T. Apical targeting of syntaxin 3 is essential for epithelial cell polarity. J. Cell Biol.173, 937–948 (2006). ArticleCASPubMedPubMed Central Google Scholar
Croce, A. et al. A novel actin barbed-end-capping activity in EPS-8 regulates apical morphogenesis in intestinal cells of Caenorhabditis elegans. Nature Cell Biol.6, 1173–1179 (2004). ArticleCASPubMed Google Scholar
Troxell, M. L., Loftus, D. J., Nelson, W. J. & Marrs, J. A. Mutant cadherin affects epithelial morphogenesis and invasion, but not transformation. J. Cell Sci.114, 1237–1246 (2001). ArticleCASPubMed Google Scholar
Aijaz, S., Sanchez-Heras, E., Balda, M. S. & Matter, K. Regulation of tight junction assembly and epithelial morphogenesis by the heat shock protein APG-2. BMC Cell Biol.8, 49 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Wu, V. M. & Beitel, G. J. A junctional problem of apical proportions: epithelial tube-size control by septate junctions in the Drosophila tracheal system. Curr. Opin. Cell Biol.16, 493–499 (2004). ArticleCASPubMed Google Scholar