Lara-Gonzalez, P., Westhorpe, F. G. & Taylor, S. S. The spindle assembly checkpoint. Curr. Biol.22, R966–R980 (2012). ArticleCASPubMed Google Scholar
Jia, L., Kim, S. & Yu, H. Tracking spindle checkpoint signals from kinetochores to APC/C. Trends Biochem. Sci.38, 302–311 (2013). ArticleCASPubMed Google Scholar
Vleugel, M., Hoogendoorn, E., Snel, B. & Kops, G. J. Evolution and function of the mitotic checkpoint. Dev. Cell23, 239–250 (2012). ArticleCASPubMed Google Scholar
Pines, J. Cubism and the cell cycle: the many faces of the APC/C. Nat. Rev. Mol. Cell Biol.12, 427–438 (2011). ArticleCASPubMed Google Scholar
Sironi, L. et al. Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint. EMBO J.21, 2496–2506 (2002). ArticleCASPubMedPubMed Central Google Scholar
De Antoni, A. et al. The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr. Biol.15, 214–225 (2005). ArticleCASPubMed Google Scholar
Mapelli, M. & Musacchio, A. MAD contortions: conformational dimerization boosts spindle checkpoint signaling. Curr. Opin. Struct. Biol.17, 716–725 (2007). ArticleCASPubMed Google Scholar
Chao, W. C., Kulkarni, K., Zhang, Z., Kong, E. H. & Barford, D. Structure of the mitotic checkpoint complex. Nature484, 208–213 (2012). ArticleCASPubMed Google Scholar
Doncic, A., Ben-Jacob, E. & Barkai, N. Noise resistance in the spindle assembly checkpoint. Mol. Syst. Biol.2, 1–6 (2006). Article Google Scholar
Wu, J. Q. & Pollard, T. D. Counting cytokinesis proteins globally and locally in fission yeast. Science310, 310–314 (2005). ArticleCASPubMed Google Scholar
Ohi, M. D. et al. Structural organization of the anaphase-promoting complex bound to the mitotic activator Slp1. Mol. Cell28, 871–885 (2007). ArticleCASPubMedPubMed Central Google Scholar
Yamashita, Y. M. et al. 20S cyclosome complex formation and proteolytic activity inhibited by the cAMP/PKA pathway. Nature384, 276–279 (1996). ArticleCASPubMed Google Scholar
Vanoosthuyse, V., Valsdottir, R., Javerzat, J. P. & Hardwick, K. G. Kinetochore targeting of fission yeast Mad and Bub proteins is essential for spindle checkpoint function but not for all chromosome segregation roles of Bub1p. Mol. Cell Biol.24, 9786–9801 (2004). ArticleCASPubMedPubMed Central Google Scholar
He, X., Jones, M. H., Winey, M. & Sazer, S. Mph1, a member of the Mps1-like family of dual specificity protein kinases, is required for the spindle checkpoint in S. pombe. J. Cell Sci.111, 1635–1647 (1998). CASPubMed Google Scholar
Zich, J. et al. Kinase activity of fission yeast Mph1 is required for Mad2 andMad3 to stably bind the anaphase promoting complex. Curr. Biol.22, 296–301 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hiraoka, Y., Toda, T. & Yanagida, M. The NDA3 gene of fission yeast encodes beta-tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. Cell39, 349–358 (1984). ArticleCASPubMed Google Scholar
Millband, D. N. & Hardwick, K. G. Fission yeast Mad3p is required for Mad2p to inhibit the anaphase-promoting complex and localizes to kinetochores in a Bub1p-, Bub3p-, and Mph1p-dependent manner. Mol. Cell Biol.22, 2728–2742 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bar-Even, A. et al. Noise in protein expression scales with natural protein abundance. Nat. Genet.38, 636–643 (2006). ArticleCASPubMed Google Scholar
Newman, J. R. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature441, 840–846 (2006). ArticleCASPubMed Google Scholar
Marguerat, S. et al. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell151, 671–683 (2012). ArticleCASPubMedPubMed Central Google Scholar
Amorim, M. J., Cotobal, C., Duncan, C. & Mata, J. Global coordination of transcriptional control and mRNA decay during cellular differentiation. Mol. Syst. Biol.6, 380 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sun, M. et al. Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation. Genome Res.22, 1350–1359 (2012). ArticleCASPubMedPubMed Central Google Scholar
Castelnuovo, M. et al. Bimodal expression of PHO84 is modulated by early termination of antisense transcription. Nat. Struct. Mol. Biol.20, 851–858 (2013). ArticleCASPubMedPubMed Central Google Scholar
Emre, D., Terracol, R., Poncet, A., Rahmani, Z. & Karess, R. E. A mitotic role for Mad1 beyond the spindle checkpoint. J. Cell Sci.124, 1664–1671 (2011). ArticleCASPubMed Google Scholar
Schuyler, S. C., Wu, Y. F. & Kuan, V. J. The Mad1-Mad2 balancing act—a damaged spindle checkpoint in chromosome instability and cancer. J. Cell Sci.125, 4197–4206 (2012). ArticleCASPubMed Google Scholar
Tipton, A. R. et al. BUBR1 and closed MAD2 (C-MAD2) interact directly to assemble a functional mitotic checkpoint complex. J. Biol. Chem.286, 21173–21179 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yang, M. et al. Insights into mad2 regulation in the spindle checkpoint revealed by the crystal structure of the symmetric mad2 dimer. PLoS Biol.6, 643–655 (2008). ArticleCAS Google Scholar
Heinrich, S., Windecker, H., Hustedt, N. & Hauf, S. Mph1 kinetochore localization is crucial and upstream in the hierarchy of spindle assembly checkpoint protein recruitment to kinetochores. J. Cell Sci.125, 4720–4727 (2012). ArticleCASPubMed Google Scholar
Sironi, L. et al. Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for the spindle checkpoint. EMBO J.20, 6371–6382 (2001). ArticleCASPubMedPubMed Central Google Scholar
Kim, S. H., Lin, D. P., Matsumoto, S., Kitazono, A. & Matsumoto, T. Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science279, 1045–1047 (1998). ArticleCASPubMed Google Scholar
Barnhart, E. L., Dorer, R. K., Murray, A. W. & Schuyler, S. C. Reduced Mad2 expression keeps relaxed kinetochores from arresting budding yeast in mitosis. Mol. Biol. Cell22, 2448–2457 (2011). ArticleCASPubMedPubMed Central Google Scholar
Michel, L. S. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature409, 355–359 (2001). ArticleCASPubMed Google Scholar
Iwanaga, Y. et al. Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Res.67, 160–166 (2007). ArticleCASPubMed Google Scholar
Ryan, S. D. et al. Up-regulation of the mitotic checkpoint component Mad1 causes chromosomal instability and resistance to microtubule poisons. Proc. Natl Acad. Sci. USA109, E2205–E2214 (2012). ArticlePubMedPubMed Central Google Scholar
Sczaniecka, M. et al. The spindle checkpoint functions of Mad3 and Mad2 depend on a Mad3 KEN box-mediated interaction with Cdc20-anaphase-promoting complex (APC/C). J. Biol. Chem.283, 23039–23047 (2008). ArticleCASPubMedPubMed Central Google Scholar
Heim, R., Cubitt, A. B. & Tsien, R. Y. Improved green fluorescence. Nature373, 663–664 (1995). ArticleCASPubMed Google Scholar
Buchler, N. E. & Louis, M. Molecular titration and ultrasensitivity in regulatory networks. J. Mol. Biol.384, 1106–1119 (2008). ArticleCASPubMed Google Scholar
Reddy, S. K., Rape, M., Margansky, W. A. & Kirschner, M. W. Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature446, 921–925 (2007). ArticleCASPubMed Google Scholar
Mansfeld, J., Collin, P., Collins, M. O., Choudhary, J. S. & Pines, J. APC15 drives the turnover of MCC-CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat. Cell Biol.13, 1234–1243 (2011). ArticleCASPubMedPubMed Central Google Scholar
Uzunova, K. et al. APC15 mediates CDC20 autoubiquitylation by APC/C(MCC) and disassembly of the mitotic checkpoint complex. Nat. Struct. Mol. Biol.19, 1116–1123 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sigal, A. et al. Variability and memory of protein levels in human cells. Nature444, 643–646 (2006). ArticleCASPubMed Google Scholar
Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature459, 428–432 (2009). ArticleCASPubMedPubMed Central Google Scholar
Balazsi, G., van Oudenaarden, A. & Collins, J. J. Cellular decision making and biological noise: from microbes to mammals. Cell144, 910–925 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chen, R. H., Brady, D. M., Smith, D., Murray, A. W. & Hardwick, K. G. The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol. Biol. Cell10, 2607–2618 (1999). ArticleCASPubMedPubMed Central Google Scholar
Fraschini, R. et al. Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. EMBO J.20, 6648–6659 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sudakin, V., Chan, G. K. & Yen, T. J. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. J. Cell Biol.154, 925–936 (2001). ArticleCASPubMedPubMed Central Google Scholar
Shah, J. V. et al. Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing. Curr. Biol.14, 942–952 (2004). CASPubMed Google Scholar
Poddar, A., Stukenberg, P. T. & Burke, D. J. Two complexes of spindle checkpoint proteins containing Cdc20 and Mad2 assemble during mitosis independently of the kinetochore in Saccharomyces cerevisiae. Eukaryot. Cell4, 867–878 (2005). ArticleCASPubMedPubMed Central Google Scholar
Nilsson, J., Yekezare, M., Minshull, J. & Pines, J. The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nat. Cell Biol.10, 1411–1420 (2008). ArticleCASPubMedPubMed Central Google Scholar
Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature473, 337–342 (2011). ArticleCASPubMed Google Scholar
Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nat. Biotechnol.28, 1248–1250 (2010). ArticleCASPubMed Google Scholar
Baker, D. J. et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nat. Genet.36, 744–749 (2004). ArticleCASPubMed Google Scholar
Gascoigne, K. E. & Taylor, S. S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell14, 111–122 (2008). ArticleCASPubMed Google Scholar
Oliva, A. et al. The cell cycle-regulated genes of Schizosaccharomyces pombe. PLoS Biol.3, 1239–1260 (2005). ArticleCAS Google Scholar
Rustici, G. et al. Periodic gene expression program of the fission yeast cell cycle. Nat. Genet.36, 809–817 (2004). ArticleCASPubMed Google Scholar
Bahler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast14, 943–951 (1998). ArticleCASPubMed Google Scholar
Rosenow, M. A., Huffman, H. A., Phail, M. E. & Wachter, R. M. The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Biochemistry43, 4464–4472 (2004). ArticleCASPubMed Google Scholar
Matsuyama, A. et al. pDUAL, a multipurpose, multicopy vector capable of chromosomal integration in fission yeast. Yeast21, 1289–1305 (2004). ArticleCASPubMed Google Scholar
Russell, P. & Nurse, P. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell45, 145–153 (1986). ArticleCASPubMed Google Scholar
Hagan, I. & Yanagida, M. Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene. Nature347, 563–566 (1990). ArticleCASPubMed Google Scholar
Yokobayashi, S. & Watanabe, Y. The kinetochore protein Moa1 enables cohesion-mediated monopolar attachment at meiosis I. Cell123, 803–817 (2005). ArticleCASPubMed Google Scholar
Windecker, H., Langegger, M., Heinrich, S. & Hauf, S. Bub1 and Bub3 promote the conversion from monopolar to bipolar chromosome attachment independently of shugoshin. EMBO Rep.10, 1022–1028 (2009). ArticleCASPubMedPubMed Central Google Scholar
He, X., Patterson, T. E. & Sazer, S. The Schizosaccharomyces pombe spindle checkpoint protein mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc. Natl Acad. Sci. USA94, 7965–7970 (1997). ArticleCASPubMedPubMed Central Google Scholar
Tange, Y. & Niwa, O. Novel mad2 alleles isolated in a Schizosaccharomyces pombe gamma-tubulin mutant are defective in metaphase arrest activity, but remain functional for chromosome stability in unperturbed mitosis. Genetics175, 1571–1584 (2007). ArticleCASPubMedPubMed Central Google Scholar
Krien, M. J. et al. A NIMA homologue promotes chromatin condensation in fission yeast. J. Cell Sci.111, 967–976 (1998). CASPubMed Google Scholar
Grallert, A. & Hagan, I. M. Schizosaccharomyces pombe NIMA-related kinase, Fin1, regulates spindle formation and an affinity of Polo for the SPB. EMBO J.21, 3096–3107 (2002). ArticleCASPubMedPubMed Central Google Scholar
Funabiki, H., Kumada, K. & Yanagida, M. Fission yeast Cut1 and Cut2 are essential for sister chromatid separation, concentrate along the metaphase spindle and form large complexes. EMBO J.15, 6617–6628 (1996). ArticleCASPubMedPubMed Central Google Scholar
Matsumura, T. et al. A brute force postgenome approach to identify temperature-sensitive mutations that negatively interact with separase and securin plasmids. Genes. Cells8, 341–355 (2003). ArticleCASPubMed Google Scholar
Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol.194, 795–823 (1991). ArticleCASPubMed Google Scholar
Widmer, C. et al. GRED: graph-regularized 3D shape reconstruction from highly anisotropic and noisy images. Preprint at http://arXiv.org/abs/1309.4426 (2013).
Capoulade, J., Wachsmuth, M., Hufnagel, L. & Knop, M. Quantitative fluorescence imaging of protein diffusion and interaction in living cells. Nat. Biotechnol.29, 835–839 (2011). ArticleCASPubMed Google Scholar
Wu, Y., Genton, M. G. & Stefanski, L. A. A multivariate two-sample mean test for small sample size and missing data. Biometrics62, 877–885 (2006). ArticlePubMed Google Scholar
Mueller, F. et al. FISH-quant: automatic counting of transcripts in 3D FISH images. Nat. Methods10, 277–278 (2013). ArticleCASPubMed Google Scholar
Perkins, W., Tygert, M. & Ward, R. Chi-square and classical exact tests often wildly misreport significance; the remedy lies in computers. Preprint at http://arXiv.org/abs/1108.4126 (2011).
Yamada, H. Y., Matsumoto, S. & Matsumoto, T. High dosage expression of a zinc finger protein, Grt1, suppresses a mutant of fission yeast slp1(+), a homolog of CDC20/p55CDC/Fizzy. J. Cell Sci.113, 3989–3999 (2000). CASPubMed Google Scholar