A homodimer interface without base pairs in an RNA mimic of red fluorescent protein (original) (raw)

References

  1. Song, W., Filonov, G.S. & Jaffrey, S.R. Imaging RNA polymerase III transcription dynamics using a photostable RNA-fluorophore complex. Nat. Chem. Biol. 13 http://dx.doi.org/10.1038/nchembio.2477 (2017).
  2. Ellington, A.D. & Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).
    Article CAS PubMed Google Scholar
  3. Gross, L.A., Baird, G.S., Hoffman, R.C., Baldridge, K.K. & Tsien, R.Y. The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. USA 97, 11990–11995 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  4. Wall, M.A., Socolich, M. & Ranganathan, R. The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nat. Struct. Biol. 7, 1133–1138 (2000).
    Article CAS PubMed Google Scholar
  5. Yarbrough, D., Wachter, R.M., Kallio, K., Matz, M.V. & Remington, S.J. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. Proc. Natl. Acad. Sci. USA 98, 462–467 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  6. Baugh, C., Grate, D. & Wilson, C. 2.8 A crystal structure of the malachite green aptamer. J. Mol. Biol. 301, 117–128 (2000).
    Article CAS PubMed Google Scholar
  7. Paige, J.S., Wu, K.Y. & Jaffrey, S.R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  8. Dolgosheina, E.V. et al. RNA mango aptamer-fluorophore: a bright, high-affinity complex for RNA labeling and tracking. ACS Chem. Biol. 9, 2412–2420 (2014).
    Article CAS PubMed Google Scholar
  9. Trachman, R.J.I. III et al. Structural basis for high-affinity fluorophore binding and activation by RNA Mango. Nat. Chem. Biol. 13, 807–813 (2017).
    Article CAS PubMed PubMed Central Google Scholar
  10. Day, R.N. & Davidson, M.W. The Fluorescent Protein Revolution (CRC Press, Boca Raton, 2014).
  11. Grate, D. & Wilson, C. Laser-mediated, site-specific inactivation of RNA transcripts. Proc. Natl. Acad. Sci. USA 96, 6131–6136 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  12. Wang, P.C. et al. Photochemical properties of Spinach and its use in selective imaging. Chem. Sci. 4, 2865–2873 (2013).
    Article CAS Google Scholar
  13. Han, K.Y., Leslie, B.J., Fei, J., Zhang, J. & Ha, T. Understanding the photophysics of the spinach-DFHBI RNA aptamer-fluorogen complex to improve live-cell RNA imaging. J. Am. Chem. Soc. 135, 19033–19038 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  14. Warner, K.D. et al. Structural basis for activity of highly efficient RNA mimics of green fluorescent protein. Nat. Struct. Mol. Biol. 21, 658–663 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  15. Strack, R.L., Disney, M.D. & Jaffrey, S.R. A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat-containing RNA. Nat. Methods 10, 1219–1224 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  16. Caspar, D.L.D. & Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962).
    Article CAS PubMed Google Scholar
  17. Gellert, M., Lipsett, M.N. & Davies, D.R. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. USA 48, 2013–2018 (1962).
    Article CAS PubMed PubMed Central Google Scholar
  18. Burge, S., Parkinson, G.N., Hazel, P., Todd, A.K. & Neidle, S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 34, 5402–5415 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  19. Ghosh, I., Hamilton, A.D. & Regan, L. Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J. Am. Chem. Soc. 122, 5658–5659 (2000).
    Article CAS Google Scholar
  20. Shekhawat, S.S. & Ghosh, I. Split-protein systems: beyond binary protein-protein interactions. Curr. Opin. Chem. Biol. 15, 789–797 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  21. Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol. 33, 491–497 (1968).
    Article CAS PubMed Google Scholar
  22. Laughlan, G. et al. The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science 265, 520–524 (1994).
    Article CAS PubMed Google Scholar
  23. Job, P. Formation and stability of inorganic complexes in solution. Ann. Chim. 9, 113–203 (1928).
    CAS Google Scholar
  24. Dickerson, R.E. et al. Definitions and nomenclature of nucleic acid structure parameters. EMBO J. 8, 1–4 (1989).
    Article Google Scholar
  25. Goodsell, D.S. & Olson, A.J. Structural symmetry and protein function. Annu. Rev. Biophys. Biomol. Struct. 29, 105–153 (2000).
    Article CAS PubMed Google Scholar
  26. Jones, C.P. & Ferré-D'Amaré, A.R. RNA quaternary structure and global symmetry. Trends Biochem. Sci. 40, 211–220 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  27. Howard, F.B. & Miles, H.T. Poly(inosinic acid) helices: essential chelation of alkali metal ions in the axial channel. Biochemistry 21, 6736–6745 (1982).
    Article CAS PubMed Google Scholar
  28. Williamson, J.R., Raghuraman, M.K. & Cech, T.R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59, 871–880 (1989).
    Article CAS PubMed Google Scholar
  29. Sen, D. & Gilbert, W. A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature 344, 410–414 (1990).
    Article CAS PubMed Google Scholar
  30. Xu, S. et al. Thioflavin T as an efficient fluorescence sensor for selective recognition of RNA G-quadruplexes. Sci. Rep. 6, 24793 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  31. Ormö, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).
    Article PubMed Google Scholar
  32. Yang, F., Moss, L.G. & Phillips, G.N. Jr. The molecular structure of green fluorescent protein. Nat. Biotechnol. 14, 1246–1251 (1996).
    Article CAS PubMed Google Scholar
  33. Huang, H. et al. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore. Nat. Chem. Biol. 10, 686–691 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  34. Westhof, E., Dumas, P. & Moras, D. Crystallographic refinement of yeast aspartic acid transfer RNA. J. Mol. Biol. 184, 119–145 (1985).
    Article CAS PubMed Google Scholar
  35. Marino, J.P., Gregorian, R.S. Jr., Csankovszki, G. & Crothers, D.M. Bent helix formation between RNA hairpins with complementary loops. Science 268, 1448–1454 (1995).
    Article CAS PubMed Google Scholar
  36. Zhang, J. & Ferré-D'Amaré, A.R. Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA. Nature 500, 363–366 (2013).
    Article CAS PubMed Google Scholar
  37. Grigg, J.C. & Ke, A. Structural determinants for geometry and information decoding of tRNA by T box leader RNA. Structure 21, 2025–2032 (2013).
    Article CAS PubMed Google Scholar
  38. Burke, J.E., Sashital, D.G., Zuo, X., Wang, Y.X. & Butcher, S.E. Structure of the yeast U2/U6 snRNA complex. RNA 18, 673–683 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  39. Davis, J.H. et al. RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. J. Mol. Biol. 351, 371–382 (2005).
    Article CAS PubMed Google Scholar
  40. Ennifar, E., Walter, P., Ehresmann, B., Ehresmann, C. & Dumas, P. Crystal structures of coaxially stacked kissing complexes of the HIV-1 RNA dimerization initiation site. Nat. Struct. Biol. 8, 1064–1068 (2001).
    Article CAS PubMed Google Scholar
  41. Szent-Gyorgyi, C. et al. Malachite green mediates homodimerization of antibody VL domains to form a fluorescent ternary complex with singular symmetric interfaces. J. Mol. Biol. 425, 4595–4613 (2013).
    Article CAS PubMed PubMed Central Google Scholar
  42. Dong, J. et al. Isomerization in fluorescent protein chromophores involves addition/elimination. J. Am. Chem. Soc. 130, 14096–14098 (2008).
    Article CAS PubMed Google Scholar
  43. Shank, N.I., Pham, H.H., Waggoner, A.S. & Armitage, B.A. Twisted cyanines: a non-planar fluorogenic dye with superior photostability and its use in a protein-based fluoromodule. J. Am. Chem. Soc. 135, 242–251 (2013).
    Article CAS PubMed Google Scholar
  44. Leontis, N.B. & Westhof, E. Geometric nomenclature and classification of RNA base pairs. RNA 7, 499–512 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  45. Xiao, H., Edwards, T.E. & Ferré-D'Amaré, A.R. Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. Chem. Biol. 15, 1125–1137 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  46. Otwinowski, Z. & Minor, W. Processing of diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
    Article CAS PubMed Google Scholar
  47. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  48. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
    CAS PubMed PubMed Central Google Scholar
  49. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).
    Article CAS PubMed Google Scholar
  50. Chou, F.-C., Sripakdeevong, P., Dibrov, S.M., Hermann, T. & Das, R. Correcting pervasive errors in RNA crystallography through enumerative structure prediction. Nat. Methods 10, 74–76 (2013).
    Article CAS PubMed Google Scholar
  51. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  52. Konarev, P.V., Volkov, V.V., Sokolova, A.V., Koch, M.H.J. & Svergun, D.I. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36, 1277–1282 (2003).
    Article CAS Google Scholar
  53. Svergun, D.I., Bargerato, C. & Koch, M.H.J. CRYSOL - a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995).
    Article CAS Google Scholar
  54. Tsai, C., Smider, V., Hwang, B.J. & Chu, G. Electrophoretic mobility shift assays for protein-DNA complexes involved in DNA repair. Methods Mol. Biol. 920, 53–78 (2012).
    Article CAS PubMed PubMed Central Google Scholar

Download references