A lower limit to atmospheric CO2 concentrations over the past 800,000 years (original) (raw)

References

  1. Broecker, W. S. & Denton, G. H. The role of ocean–atmosphere reorganizations in glacial cycles. Geochim. Cosmochim. Acta 53, 2465–2501 (1989).
    Article Google Scholar
  2. Jaccard, S. L. et al. Two modes of change in Southern Ocean productivity over the past million years. Science 339, 1419–1423 (2013).
    Article Google Scholar
  3. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).
    Article Google Scholar
  4. Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).
    Article Google Scholar
  5. Broecker, W. S., Yu, J. & Putnam, A. E. Two contributors to the glacial CO2 decline. Earth Planet. Sci. Lett. 429, 191–196 (2015).
    Article Google Scholar
  6. Huybers, P. & Langmuir, C. Feedback between deglaciation, volcanism, and atmospheric CO2 . Earth Planet. Sci. Lett. 286, 479–491 (2009).
    Article Google Scholar
  7. Lund, D. C. et al. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations. Science 351, 478–482 (2016).
    Article Google Scholar
  8. Ronge, T. A. et al. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool. Nat. Commun. 7, 11487 (2016).
    Article Google Scholar
  9. Zech, R. A permafrost glacial hypothesis—permafrost carbon might help explaining the Pleistocene ice ages. Quat. Sci. J. 61, 84–92 (2012).
    Google Scholar
  10. Cartapanis, O., Bianchi, D., Jaccard, S. L. & Galbraith, E. D. Global pulses of organic carbon burial in deep-sea sediments during glacial maxima. Nat. Commun. 7, 10796 (2016).
    Article Google Scholar
  11. Royer, D. L. in Treatise on Geochemistry Vol. 6 2nd edn, 251–267 (Elsevier, 2014).
    Book Google Scholar
  12. Pagani, M., Caldeira, K., Berner, R. & Beerling, D. J. The role of terrestrial plants in limiting atmospheric CO2 decline over the past 24 million years. Nature 460, 85–88 (2009).
    Article Google Scholar
  13. Anagnostou, E. et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384 (2016).
    Article Google Scholar
  14. Montañez, I. P. et al. Climate, _p_CO2 and terrestrial carbon cycle linkages during late Palaeozoic glacial–interglacial cycles. Nat. Geosci. 9, 824–828 (2016).
    Article Google Scholar
  15. Spratt, R. M. & Lisiecki, L. E. A late Pleistocene sea level stack. Clim. Past 12, 1079–1092 (2016).
    Article Google Scholar
  16. Snyder, C. W. Evolution of global temperature over the past two million years. Nature 538, 226–228 (2016).
    Article Google Scholar
  17. Abe-Ouchi, A. et al. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500, 190–193 (2013).
    Article Google Scholar
  18. Paillard, D. & Parrenin, F. The Antarctic ice sheet and the triggering of deglaciations. Earth Planet. Sci. Lett. 227, 263–271 (2004).
    Article Google Scholar
  19. Gildor, H. & Tziperman, E. A sea ice climate switch mechanism for the 100-kyr glacial cycles. J. Geophys. Res. 106, 9117–9133 (2001).
    Article Google Scholar
  20. Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and δ18O of the glacial deep ocean. Science 298, 1769–1773 (2002).
    Article Google Scholar
  21. Manabe, S. & Bryan, K. CO2-induced change in a coupled ocean–atmosphere model and its paleoclimatic implications. J. Geophys. Res. 90, 11689–11707 (1985).
    Article Google Scholar
  22. Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).
    Article Google Scholar
  23. Stephens, B. B. & Keeling, R. F. The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature 404, 171–174 (2000).
    Article Google Scholar
  24. Brovkin, V., Ganopolski, A., Archer, D. & Munhoven, G. Glacial CO2 cycle as a succession of key physical and biogeochemical processes. Clim. Past 8, 251–264 (2012).
    Article Google Scholar
  25. Gildor, H., Tziperman, E. & Toggweiler, J. R. Sea ice switch mechanism and glacial-interglacial CO2 variations. Glob. Biogeochem. Cycles 16, 3 (2002).
    Article Google Scholar
  26. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A neoproterozoic snowball earth. Science 281, 1342–1346 (1998).
    Article Google Scholar
  27. Pierrehumbert, R. T., Abbot, D. S., Voigt, A. & Koll, D. Climate of the neoproterozoic. Annu. Rev. Earth Planet. Sci. 39, 417–460 (2011).
    Article Google Scholar
  28. Zeebe, R. E. & Caldeira, K. Close mass balance of long-term carbon fluxes from ice-core CO2 and ocean chemistry records. Nat. Geosci. 1, 312–315 (2008).
    Article Google Scholar
  29. Kump, L. R., Brantley, S. L. & Arthur, M. A. Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci. 28, 611–667 (2000).
    Article Google Scholar
  30. Ridgwell, A. & Hargreaves, J. Regulation of atmospheric CO2 by deep-sea sediments in an Earth system model. Glob. Biogeochem. Cycles 21, GB2008 (2007).
    Article Google Scholar
  31. Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997).
    Article Google Scholar
  32. Quirk, J., Leake, J. R., Banwart, S. A., Taylor, L. L. & Beerling, D. J. Weathering by tree-root-associating fungi diminishes under simulated Cenozoic atmospheric CO2 decline. Biogeosciences 11, 321–331 (2014).
    Article Google Scholar
  33. Ciais, P. et al. Large inert carbon pool in the terrestrial biosphere during the last glacial maximum. Nat. Geosci. 5, 74–79 (2012).
    Article Google Scholar
  34. Riebesell, U. & Tortell, P. D. in Ocean Acidification (eds Gattuso, J.-P. & Hansson, L.) 99–121 (Oxford Univ. Press, 2011).
    Google Scholar
  35. Hutchins, D. A. et al. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. Limnol. Oceanogr. 52, 1293–1304 (2007).
    Article Google Scholar
  36. Hutchins, D. A., Fu, F.-X., Webb, E. A., Walworth, N. & Tagliabue, A. Taxon-specific response of marine nitrogen fixers to elevated carbon dioxide concentrations. Nat. Geosci. 6, 790–795 (2013).
    Article Google Scholar
  37. Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).
    Article Google Scholar
  38. Galbraith, E. D. & Jaccard, S. L. Deglacial weakening of the oceanic soft tissue pump: global constraints from sedimentary nitrogen isotopes and oxygenation proxies. Quat. Sci. Rev. 109, 38–48 (2015).
    Article Google Scholar
  39. Galbraith, E. D. et al. The acceleration of oceanic denitrification during deglacial warming. Nat. Geosci. 6, 579–584 (2013).
    Article Google Scholar
  40. Ren, H. et al. Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science 323, 244–248 (2009).
    Article Google Scholar
  41. Ganeshram, R. S., Pedersen, T. F., Calvert, S. & François, R. Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories. Nature 415, 156–159 (2002).
    Article Google Scholar
  42. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).
    Article Google Scholar
  43. Eugster, O., Gruber, N., Deutsch, C., Jaccard, S. L. & Payne, M. R. The dynamics of the marine nitrogen cycle across the last deglaciation. Paleoceanography 28, 116–129 (2013).
    Article Google Scholar
  44. Crucifix, M. Oscillators and relaxation phenomena in Pleistocene climate theory. Phil. Trans. R. Soc. A 370, 1140–1165 (2012).
    Article Google Scholar
  45. Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).
    Article Google Scholar
  46. Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 542–549 (2015).
    Article Google Scholar
  47. Bereiter, B. et al. Mode change of millennial CO2 variability during the last glacial cycle associated with a bipolar marine carbon seesaw. Proc. Natl Acad. Sci. USA 109, 9755–9760 (2012).
    Article Google Scholar
  48. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).
    Google Scholar
  49. Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).
    Article Google Scholar

Download references