RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci (original) (raw)
Hesslein, D.G. & Schatz, D.G. Factors and forces controlling V(D)J recombination. Adv. Immunol.78, 169–232 (2001). ArticleCAS Google Scholar
Bassing, C.H., Swat, W. & Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination. Cell109 (Suppl), S45–S55 (2002). ArticleCAS Google Scholar
Hsu, L.Y. et al. A conserved transcriptional enhancer regulates RAG gene expression in developing B cells. Immunity19, 105–117 (2003). ArticleCAS Google Scholar
Gellert, M.V. (D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem.71, 101–132 (2002). ArticleCAS Google Scholar
Roth, D.B. Restraining the V(D)J recombinase. Nat. Rev. Immunol.3, 656–666 (2003). ArticleCAS Google Scholar
Bassing, C.H. et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell114, 359–370 (2003). ArticleCAS Google Scholar
Celeste, A. et al. Genomic instability in mice lacking histone H2AX. Science296, 922–927 (2002). ArticleCAS Google Scholar
Chen, H.T. et al. Response to RAG-mediated VDJ cleavage by NBS1 and γ-H2AX. Science290, 1962–1965 (2000). ArticleCAS Google Scholar
Bredemeyer, A.L. et al. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature442, 466–470 (2006). ArticleCAS Google Scholar
Perkins, E.J. et al. Sensing of intermediates in V(D)J recombination by ATM. Genes Dev.16, 159–164 (2002). ArticleCAS Google Scholar
Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev.18, 411–422 (2004). ArticleCAS Google Scholar
Kosak, S.T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science296, 158–162 (2002). ArticleCAS Google Scholar
Roldan, E. et al. Locus 'decontraction' and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat. Immunol.6, 31–41 (2005). ArticleCAS Google Scholar
Sayegh, C., Jhunjhunwala, S., Riblet, R. & Murre, C. Visualization of looping involving the immunoglobulin heavy-chain locus in developing B cells. Genes Dev.19, 322–327 (2005). ArticleCAS Google Scholar
Alt, F.W. et al. Ordered rearrangement of immunoglobulin heavy chain variable region segments. EMBO J.3, 1209–1219 (1984). ArticleCAS Google Scholar
Fitzsimmons, S.P., Bernstein, R.M., Max, E.E., Skok, J.A. & Shapiro, M.A. Dynamic changes in accessibility, nuclear positioning, recombination, and transcription at the Igκ locus. J. Immunol.179, 5264–5273 (2007). ArticleCAS Google Scholar
Goldmit, M. et al. Epigenetic ontogeny of the Igk locus during B cell development. Nat. Immunol.6, 198–203 (2005). ArticleCAS Google Scholar
Xu, N., Tsai, C.L. & Lee, J.T. Transient homologous chromosome pairing marks the onset of X inactivation. Science311, 1149–1152 (2006). ArticleCAS Google Scholar
Bacher, C.P. et al. Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat. Cell Biol.8, 293–299 (2006). ArticleCAS Google Scholar
Augui, S. et al. Sensing X chromosome pairs before X inactivation via a novel X-pairing region of the Xic. Science318, 1632–1636 (2007). ArticleCAS Google Scholar
Jung, D. & Alt, F.W. Unraveling V(D)J recombination; insights into gene regulation. Cell116, 299–311 (2004). ArticleCAS Google Scholar
Skok, J.A. et al. Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nat. Immunol.8, 378–387 (2007). ArticleCAS Google Scholar
Hesslein, D.G. et al. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev.17, 37–42 (2003). ArticleCAS Google Scholar
Nutt, S.L., Urbanek, P., Rolink, A. & Busslinger, M. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev.11, 476–491 (1997). ArticleCAS Google Scholar
Sonoda, E. et al. B cell development under the condition of allelic inclusion. Immunity6, 225–233 (1997). ArticleCAS Google Scholar
Fugmann, S.D., Villey, I.J., Ptaszek, L.M. & Schatz, D.G. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Mol. Cell5, 97–107 (2000). ArticleCAS Google Scholar
Kim, D.R., Dai, Y., Mundy, C.L., Yang, W. & Oettinger, M.A. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev.13, 3070–3080 (1999). ArticleCAS Google Scholar
Landree, M.A., Wibbenmeyer, J.A. & Roth, D.B. Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Genes Dev.13, 3059–3069 (1999). ArticleCAS Google Scholar
Bredemeyer, A.L. et al. DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes. Nature456, 819–823 (2008). ArticleCAS Google Scholar
Yin, B. & Bassing, C.H. The sticky business of histone H2AX in V(D)J recombination, maintenance of genomic stability, and suppression of lymphoma. Immunol. Res.42, 29–40 (2008). ArticleCAS Google Scholar
Callen, E. et al. ATM prevents the persistence and propagation of chromosome breaks in lymphocytes. Cell130, 63–75 (2007). ArticleCAS Google Scholar
Ma, Y., Pannicke, U., Schwarz, K. & Lieber, M.R. Hairpin opening and overhang processing by an Artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell108, 781–794 (2002). ArticleCAS Google Scholar
Rooney, S. et al. Leaky scid phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol. Cell10, 1379–1390 (2002). ArticleCAS Google Scholar
Bertolino, E. et al. Regulation of interleukin 7-dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Nat. Immunol.6, 836–843 (2005). ArticleCAS Google Scholar
Chowdhury, D. & Sen, R. Mechanisms for feedback inhibition of the immunoglobulin heavy chain locus. Curr. Opin. Immunol.16, 235–240 (2004). ArticleCAS Google Scholar
Joliot, V., Cormier, F., Medyouf, H., Alcalde, H. & Ghysdael, J. Constitutive STAT5 activation specifically cooperates with the loss of p53 function in B-cell lymphomagenesis. Oncogene25, 4573–4584 (2006). ArticleCAS Google Scholar
Goetz, C.A., Harmon, I.R., O'Neil, J.J., Burchill, M.A. & Farrar, M.A. STAT5 activation underlies IL7 receptor-dependent B cell development. J. Immunol.172, 4770–4778 (2004). ArticleCAS Google Scholar
Hewitt, S.L. et al. Association between the Igk and Igh immunoglobulin loci mediated by the 3′ Igk enhancer induces 'decontraction' of the Igh locus in pre-B cells. Nat. Immunol.9, 396–404 (2008). ArticleCAS Google Scholar
Will, W.M. et al. Attenuation of IL-7 receptor signaling is not required for allelic exclusion. J. Immunol.176, 3350–3355 (2006). ArticleCAS Google Scholar
Li, F. & Eckhardt, L.A. A role for the IgH intronic enhancer Eμ in enforcing allelic exclusion. J. Exp. Med.206, 153–167 (2009). ArticleCAS Google Scholar
Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell68, 869–877 (1992). ArticleCAS Google Scholar
Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell68, 855–867 (1992). ArticleCAS Google Scholar
Yu, W. et al. Coordinate regulation of RAG1 and RAG2 by cell type-specific DNA elements 5′ of RAG2. Science285, 1080–1084 (1999). ArticleCAS Google Scholar
Barlow, C. et al. Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell86, 159–171 (1996). ArticleCAS Google Scholar
Skok, J.A. et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat. Immunol.2, 848–854 (2001). ArticleCAS Google Scholar
Campbell, R. Statistics for Biologists 107–117 (Cambridge University Press, Cambridge, 1989). Book Google Scholar
Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet.29, 418–425 (2001). ArticleCAS Google Scholar
Stanhope-Baker, P., Hudson, K.M., Shaffer, A.L., Constantinescu, A. & Schlissel, M.S. Cell type-specific chromatin structure determines the targeting of V(D)J recombinase activity in vitro. Cell85, 887–897 (1996). ArticleCAS Google Scholar
Liang, H.E. et al. The “dispensable” portion of RAG2 is necessary for efficient V-to-DJ rearrangement during B and T cell development. Immunity17, 639–651 (2002). ArticleCAS Google Scholar