Effector T cell plasticity: flexibility in the face of changing circumstances (original) (raw)
Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A. & Coffman, R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol.136, 2348–2357 (1986). CASPubMed Google Scholar
Murphy, C.A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med.198, 1951–1957 (2003). CASPubMedPubMed Central Google Scholar
Bettelli, E. & Kuchroo, V.K. IL-12- and IL-23-induced T helper cell subsets: birds of the same feather flock together. J. Exp. Med.201, 169–171 (2005). CASPubMedPubMed Central Google Scholar
Harrington, L.E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol.6, 1123–1132 (2005). ArticleCASPubMed Google Scholar
Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol.6, 1133–1141 (2005). ArticleCASPubMedPubMed Central Google Scholar
Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity24, 179–189 (2006). ArticleCASPubMed Google Scholar
Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell126, 1121–1133 (2006). ArticleCASPubMed Google Scholar
Yang, X.O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity28, 29–39 (2008). CASPubMed Google Scholar
Josefowicz, S.Z. & Rudensky, A. Control of regulatory T cell lineage commitment and maintenance. Immunity30, 616–625 (2009). CASPubMedPubMed Central Google Scholar
Curotto de Lafaille, M.A. & Lafaille, J.J. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity30, 626–635 (2009). CASPubMed Google Scholar
Vinuesa, C.G., Tangye, S.G., Moser, B. & Mackay, C.R. Follicular B helper T cells in antibody responses and autoimmunity. Nat. Rev. Immunol.5, 853–865 (2005). CASPubMed Google Scholar
Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med.192, 1545–1552 (2000). CASPubMedPubMed Central Google Scholar
Kim, C.H. et al. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J. Exp. Med.193, 1373–1381 (2001). CASPubMedPubMed Central Google Scholar
Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med.192, 1553–1562 (2000). CASPubMedPubMed Central Google Scholar
Vogelzang, A. et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity29, 127–137 (2008). CASPubMed Google Scholar
Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity31, 457–468 (2009). CASPubMed Google Scholar
Nurieva, R.I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity29, 138–149 (2008). CASPubMedPubMed Central Google Scholar
Fazilleau, N., Mark, L., McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Follicular helper T cells: lineage and location. Immunity30, 324–335 (2009). CASPubMedPubMed Central Google Scholar
Veldhoen, M. et al. Transforming growth factor-β 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol.9, 1341–1346 (2008). CASPubMed Google Scholar
Lu, L.F. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature442, 997–1002 (2006). CASPubMed Google Scholar
Elyaman, W. et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc. Natl. Acad. Sci. USA106, 12885–12890 (2009). CASPubMedPubMed Central Google Scholar
Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol.10, 857–863 (2009). CASPubMed Google Scholar
Trifari, S., Kaplan, C.D., Tran, E.H., Crellin, N.K. & Spits, H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nat. Immunol.10, 864–871 (2009). CASPubMed Google Scholar
Murphy, K.M. & Reiner, S.L. The lineage decisions of helper T cells. Nat. Rev. Immunol.2, 933–944 (2002). CASPubMed Google Scholar
Gor, D.O., Rose, N.R. & Greenspan, N.S. TH1–TH2: a procrustean paradigm. Nat. Immunol.4, 503–505 (2003). CASPubMed Google Scholar
Sornasse, T., Larenas, P.V., Davis, K.A., de Vries, J.E. & Yssel, H. Differentiation and stability of T helper 1 and 2 cells derived from naive human neonatal CD4+ T cells, analyzed at the single-cell level. J. Exp. Med.184, 473–483 (1996). CASPubMed Google Scholar
Manetti, R. et al. Interleukin 12 induces stable priming for interferon gamma (IFN-gamma) production during differentiation of human T helper (Th) cells and transient IFN-gamma production in established Th2 cell clones. J. Exp. Med.179, 1273–1283 (1994). CASPubMed Google Scholar
Ahmadzadeh, M. & Farber, D.L. Functional plasticity of an antigen-specific memory CD4 T cell population. Proc. Natl. Acad. Sci. USA99, 11802–11807 (2002). CASPubMedPubMed Central Google Scholar
Paliard, X. et al. Simultaneous production of IL-2, IL-4, and IFN-gamma by activated human CD4+ and CD8+ T cell clones. J. Immunol.141, 849–855 (1988). CASPubMed Google Scholar
Sundrud, M.S. et al. Genetic reprogramming of primary human T cells reveals functional plasticity in Th cell differentiation. J. Immunol.171, 3542–3549 (2003). CASPubMed Google Scholar
Szabo, S.J., Jacobson, N.G., Dighe, A.S., Gubler, U. & Murphy, K.M. Developmental commitment to the Th2 lineage by extinction of IL-12 signaling. Immunity2, 665–675 (1995). CASPubMed Google Scholar
O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity8, 275–283 (1998). CASPubMed Google Scholar
Murphy, E. et al. Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J. Exp. Med.183, 901–913 (1996). CASPubMed Google Scholar
Grogan, J.L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity14, 205–215 (2001). CASPubMed Google Scholar
Wu, C.Y. et al. Distinct lineages of TH1 cells have differential capacities for memory cell generation in vivo. Nat. Immunol.3, 852–858 (2002). CASPubMed Google Scholar
Lohning, M. et al. Long-lived virus-reactive memory T cells generated from purified cytokine-secreting T helper type 1 and type 2 effectors. J. Exp. Med.205, 53–61 (2008). CASPubMedPubMed Central Google Scholar
Messi, M. et al. Memory and flexibility of cytokine gene expression as separable properties of human TH1 and TH2 lymphocytes. Nat. Immunol.4, 78–86 (2003). CASPubMed Google Scholar
Zhou, L., Chong, M.M. & Littman, D.R. Plasticity of CD4+ T cell lineage differentiation. Immunity30, 646–655 (2009). CASPubMed Google Scholar
Zhou, L. et al. TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature453, 236–240 (2008). CASPubMedPubMed Central Google Scholar
Benson, M.J., Pino-Lagos, K., Rosemblatt, M. & Noelle, R.J. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med.204, 1765–1774 (2007). CASPubMedPubMed Central Google Scholar
Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med.204, 1757–1764 (2007). CASPubMedPubMed Central Google Scholar
Sun, C.M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med.204, 1775–1785 (2007). CASPubMedPubMed Central Google Scholar
Bending, D. et al. Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J. Clin. Invest.119, 565–572 (2009). CASPubMedPubMed Central Google Scholar
Martin-Orozco, N., Chung, Y., Chang, S.H., Wang, Y.H. & Dong, C. Th17 cells promote pancreatic inflammation but only induce diabetes efficiently in lymphopenic hosts after conversion into Th1 cells. Eur. J. Immunol.39, 216–224 (2009). CASPubMedPubMed Central Google Scholar
Hegazy, A.N. et al. Interferons direct Th2 cell reprogramming to generate a stable GATA-3+T-bet+ cell subset with combined Th2 and Th1 cell functions. Immunity32, 116–128 (2010). CASPubMed Google Scholar
Murphy, K.M. et al. Signaling and transcription in T helper development. Annu. Rev. Immunol.18, 451–494 (2000). CASPubMed Google Scholar
Moser, M. & Murphy, K.M. Dendritic cell regulation of TH1–TH2 development. Nat. Immunol.1, 199–205 (2000). CASPubMed Google Scholar
Kolls, J.K. & Linden, A. Interleukin-17 family members and inflammation. Immunity21, 467–476 (2004). CASPubMed Google Scholar
Roark, C.L., Simonian, P.L., Fontenot, A.P., Born, W.K. & O'Brien, R.L. γδ T cells: an important source of IL-17. Curr. Opin. Immunol.20, 353–357 (2008). CASPubMedPubMed Central Google Scholar
Martin, B., Hirota, K., Cua, D.J., Stockinger, B. & Veldhoen, M. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity31, 321–330 (2009). CASPubMed Google Scholar
Sutton, C.E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity31, 331–341 (2009). CASPubMed Google Scholar
Scharton, T.M. & Scott, P. Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J. Exp. Med.178, 567–577 (1993). CASPubMed Google Scholar
Martin-Fontecha, A. et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat. Immunol.5, 1260–1265 (2004). CASPubMed Google Scholar
Perrigoue, J.G. et al. MHC class II–dependent basophil–CD4+ T cell interactions promote TH2 cytokine–dependent immunity. Nat. Immunol.10, 697–705 (2009). CASPubMedPubMed Central Google Scholar
Sokol, C.L. et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat. Immunol.10, 713–720 (2009). CASPubMedPubMed Central Google Scholar
Yoshimoto, T. et al. Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide–MHC class II complexes to CD4+ T cells. Nat. Immunol.10, 706–712 (2009). CASPubMed Google Scholar
Finkelman, F.D. Basophils as TH2-inducing APCs: the dog can sing but is it a diva? Immunol. Cell. Biol.87, 568–570 (2009). Google Scholar
Chang, J.T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science315, 1687–1691 (2007). CASPubMed Google Scholar
Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity12, 27–37 (2000). CASPubMed Google Scholar
Mullen, A.C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science292, 1907–1910 (2001). CASPubMed Google Scholar
Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol.3, 549–557 (2002). CASPubMed Google Scholar
Hwang, E.S., Szabo, S.J., Schwartzberg, P.L. & Glimcher, L.H. T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science307, 430–433 (2005). CASPubMed Google Scholar
Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature463, 808–812 (2010). CASPubMedPubMed Central Google Scholar
Wei, L., Laurence, A., Elias, K.M. & O'Shea, J.J. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J. Biol. Chem.282, 34605–34610 (2007). CASPubMed Google Scholar
Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature448, 480–483 (2007). CASPubMed Google Scholar
Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature448, 484–487 (2007). CASPubMedPubMed Central Google Scholar
Veldhoen, M., Hirota, K., Christensen, J., O'Garra, A. & Stockinger, B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J. Exp. Med.206, 43–49 (2009). CASPubMedPubMed Central Google Scholar
Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature445, 648–651 (2007). CASPubMed Google Scholar
Johnston, R.J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science325, 1006–1010 (2009). CASPubMedPubMed Central Google Scholar
Ansel, K.M., McHeyzer-Williams, L.J., Ngo, V.N., McHeyzer-Williams, M.G. & Cyster, J.G. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med.190, 1123–1134 (1999). CASPubMedPubMed Central Google Scholar
Kikuchi, M. et al. Identification of negative regulatory regions within the first exon and intron of the BCL6 gene. Oncogene19, 4941–4945 (2000). CASPubMed Google Scholar
Arguni, E. et al. JunD/AP-1 and STAT3 are the major enhancer molecules for high Bcl6 expression in germinal center B cells. Int. Immunol.18, 1079–1089 (2006). CASPubMed Google Scholar
Tokoyoda, K. et al. Professional memory CD4+ T lymphocytes preferentially reside and rest in the bone marrow. Immunity30, 721–730 (2009). CASPubMed Google Scholar
Mukasa, R. et al. Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity32, 616–627 (2010). CASPubMedPubMed Central Google Scholar
Oberg, M., Bergander, L., Hakansson, H., Rannug, U. & Rannug, A. Identification of the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole, in cell culture medium, as a factor that controls the background aryl hydrocarbon receptor activity. Toxicol. Sci.85, 935–943 (2005). PubMed Google Scholar
Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity30, 155–167 (2009). PubMedPubMed Central Google Scholar
Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature453, 106–109 (2008). CASPubMed Google Scholar
Quintana, F.J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature453, 65–71 (2008). CASPubMed Google Scholar
Kimura, A., Naka, T., Nohara, K., Fujii-Kuriyama, Y. & Kishimoto, T. Aryl hydrocarbon receptor regulates Stat1 activation and participates in the development of Th17 cells. Proc. Natl. Acad. Sci. USA105, 9721–9726 (2008). CASPubMedPubMed Central Google Scholar
Denison, M.S. & Nagy, S.R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol.43, 309–334 (2003). CASPubMed Google Scholar
Rannug, A. & Fritsche, E. The aryl hydrocarbon receptor and light. Biol. Chem.387, 1149–1157 (2006). CASPubMed Google Scholar
Roubenoff, R., Cote, T., Watson, R., Levin, M.L. & Hochberg, M.C. Eosinophilia-myalgia syndrome due to L-tryptophan ingestion. Report of four cases and review of the Maryland experience. Arthritis Rheum.33, 930–938 (1990). CASPubMed Google Scholar
Farrar, J.D. et al. An instructive component in T helper cell type 2 (Th2) development mediated by GATA-3. J. Exp. Med.193, 643–650 (2001). CASPubMedPubMed Central Google Scholar
Lexberg, M.H. et al. Th memory for interleukin-17 expression is stable in vivo. Eur. J. Immunol.38, 2654–2664 (2008). CASPubMed Google Scholar
Koch, M.A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol.10, 595–602 (2009). CASPubMedPubMed Central Google Scholar
Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity31, 772–786 (2009). CASPubMedPubMed Central Google Scholar
Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature458, 351–356 (2009). CASPubMedPubMed Central Google Scholar
Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science326, 986–991 (2009). CASPubMedPubMed Central Google Scholar
Wilson, C.B., Rowell, E. & Sekimata, M. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol.9, 91–105 (2009). CASPubMed Google Scholar
Bird, J.J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity9, 229–237 (1998). CASPubMed Google Scholar
Richter, A., Lohning, M. & Radbruch, A. Instruction for cytokine expression in T helper lymphocytes in relation to proliferation and cell cycle progression. J. Exp. Med.190, 1439–1450 (1999). CASPubMedPubMed Central Google Scholar
Campos, E.I. & Reinberg, D. Histones: annotating chromatin. Annu. Rev. Genet.43, 559–599 (2009). CASPubMed Google Scholar
Kouzarides, T. Chromatin modifications and their function. Cell128, 693–705 (2007). CASPubMed Google Scholar
Ptashne, M. On the use of the word 'epigenetic'. Curr. Biol.17, R233–R236 (2007). CASPubMed Google Scholar
Xu, M. et al. Partitioning of histone H3–H4 tetramers during DNA replication-dependent chromatin assembly. Science328, 94–98 (2010). CASPubMed Google Scholar
Bix, M. & Locksley, R.M. Independent and epigenetic regulation of the interleukin-4 alleles in CD4+ T cells. Science281, 1352–1354 (1998). CASPubMed Google Scholar
Riviere, I., Sunshine, M.J. & Littman, D.R. Regulation of IL-4 expression by activation of individual alleles. Immunity9, 217–228 (1998). CASPubMed Google Scholar
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell129, 823–837 (2007). CASPubMed Google Scholar
Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science295, 1306–1311 (2002). CASPubMed Google Scholar
Spilianakis, C.G. & Flavell, R.A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat. Immunol.5, 1017–1027 (2004). CASPubMed Google Scholar
Barski, A. & Zhao, K. Genomic location analysis by ChIP-Seq. J Cell. Biochem.107, 11–18 (2009). CASPubMed Google Scholar
Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell138, 1019–1031 (2009). CASPubMedPubMed Central Google Scholar
Schraml, B.U. et al. The AP-1 transcription factor Batf controls TH17 differentiation. Nature460, 405–409 (2009). CASPubMedPubMed Central Google Scholar
Kwon, H. et al. Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity31, 941–952 (2009). CASPubMedPubMed Central Google Scholar