- Rodewald, H.-R. Thymus organogenesis. Annu. Rev. Immunol. 26, 355–388 (2008).
Article CAS PubMed Google Scholar
- Anderson, G. & Takahama, Y. Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol. 33, 256–263 (2012).
Article CAS PubMed Google Scholar
- Aschenbrenner, K. et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat. Immunol. 8, 351–358 (2007).
Article CAS PubMed Google Scholar
- Cowan, J.E. et al. The thymic medulla is required for Foxp3+ regulatory but not conventional CD4+ thymocyte development. J. Exp. Med. 210, 675–681 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Klein, L., Kyewski, B., Allen, P.M. & Hogquist, K.A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see). Nat. Rev. Immunol. 14, 377–391 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032–1039 (2001).
Article CAS PubMed Google Scholar
- Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).
Article CAS PubMed Google Scholar
- Ramsey, C. et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum. Mol. Genet. 11, 397–409 (2002).
Article CAS PubMed Google Scholar
- Nagamine, K. et al. Positional cloning of the APECED gene. Nat. Genet. 17, 393–398 (1997).
Article CAS PubMed Google Scholar
- Mathis, D. & Benoist, C. Aire. Annu. Rev. Immunol. 27, 287–312 (2009).
Article CAS PubMed Google Scholar
- Peterson, P., Org, T. & Rebane, A. Transcriptional regulation by AIRE: molecular mechanisms of central tolerance. Nat. Rev. Immunol. 8, 948–957 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Org, T. et al. The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression. EMBO Rep. 9, 370–376 (2008).
CAS PubMed PubMed Central Google Scholar
- Koh, A.S. et al. Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity. Proc. Natl. Acad. Sci. USA 105, 15878–15883 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Org, T. et al. AIRE activated tissue specific genes have histone modifications associated with inactive chromatin. Hum. Mol. Genet. 18, 4699–4710 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Giraud, M. et al. Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc. Natl. Acad. Sci. USA 109, 535–540 (2012).
Article CAS PubMed Google Scholar
- Oven, I. et al. AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells. Mol. Cell. Biol. 27, 8815–8823 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Abramson, J., Giraud, M., Benoist, C. & Mathis, D. Aire's partners in the molecular control of immunological tolerance. Cell 140, 123–135 (2010).
Article CAS PubMed Google Scholar
- Liiv, I. et al. DNA-PK contributes to the phosphorylation of AIRE: importance in transcriptional activity. Biochim. Biophys. Acta 1783, 74–83 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Žumer, K., Low, A.K., Jiang, H., Saksela, K. & Peterlin, B.M. Unmodified histone H3K4 and DNA-dependent protein kinase recruit autoimmune regulator to target genes. Mol. Cell. Biol. 32, 1354–1362 (2012).
Article PubMed PubMed Central Google Scholar
- Waterfield, M. et al. The transcriptional regulator Aire coopts the repressive ATF7ip-MBD1 complex for the induction of immunotolerance. Nat. Immunol. 15, 258–265 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Herranz, D. & Serrano, M. SIRT1: recent lessons from mouse models. Nat. Rev. Cancer 10, 819–823 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Afshar, G. & Murnane, J.P. Characterization of a human gene with sequence homology to Saccharomyces cerevisiae SIR2. Gene 234, 161–168 (1999).
Article CAS PubMed Google Scholar
- Gardner, J.M. et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 321, 843–847 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Li, H. et al. SirT1 modulates the estrogen-insulin-like growth factor-1 signaling for postnatal development of mammary gland in mice. Breast Cancer Res. 9, R1 (2007).
Article PubMed PubMed Central Google Scholar
- Gordon, J. et al. Specific expression of lacZ and cre recombinase in fetal thymic epithelial cells by multiplex gene targeting at the Foxn1 locus. BMC Dev. Biol. 7, 69 (2007).
Article PubMed PubMed Central Google Scholar
- Feige, J.N. & Auwerx, J. Transcriptional targets of sirtuins in the coordination of mammalian physiology. Curr. Opin. Cell Biol. 20, 303–309 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Zhang, T. & Kraus, W.L. SIRT1-dependent regulation of chromatin and transcription: linking NAD+ metabolism and signaling to the control of cellular functions. Biochim. Biophys. Acta 1804, 1666–1675 (2010).
Article CAS PubMed Google Scholar
- McBurney, M.W. et al. The mammalian SIR2α protein has a role in embryogenesis and gametogenesis. Mol. Cell. Biol. 23, 38–54 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Seifert, E.L. et al. SirT1 catalytic activity is required for male fertility and metabolic homeostasis in mice. FASEB J. 26, 555–566 (2012).
Article CAS PubMed Google Scholar
- Saare, M., Rebane, A., Rajashekar, B., Vilo, J. & Peterson, P. Autoimmune regulator is acetylated by transcription coactivator CBP/p300. Exp. Cell Res. 318, 1767–1778 (2012).
Article CAS PubMed Google Scholar
- Jiang, W., Anderson, M.S., Bronson, R., Mathis, D. & Benoist, C. Modifier loci condition autoimmunity provoked by Aire deficiency. J. Exp. Med. 202, 805–815 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Guerau-de-Arellano, M., Martinic, M., Benoist, C. & Mathis, D. Neonatal tolerance revisited: a perinatal window for Aire control of autoimmunity. J. Exp. Med. 206, 1245–1252 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Anderson, M.S. et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227–239 (2005).
Article CAS PubMed Google Scholar
- Sequeira, J. et al. sirt1-null mice develop an autoimmune-like condition. Exp. Cell Res. 314, 3069–3074 (2008).
Article CAS PubMed Google Scholar
- Zhang, J. et al. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J. Clin. Invest. 119, 3048–3058 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Kong, S., McBurney, M.W. & Fang, D. Sirtuin 1 in immune regulation and autoimmunity. Immunol. Cell Biol. 90, 6–13 (2012).
Article CAS PubMed Google Scholar
- Beier, U.H. et al. Sirtuin-1 targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft survival. Mol. Cell. Biol. 31, 1022–1029 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Akimova, T. et al. Targeting sirtuin-1 alleviates experimental autoimmune colitis by induction of Foxp3+ T-regulatory cells. Mucosal Immunol. 10.1038/mi.2014.10 (2014).
- Sakamoto, J., Miura, T., Shimamoto, K. & Horio, Y. Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. FEBS Lett. 556, 281–286 (2004).
Article CAS PubMed Google Scholar
- Biason-Lauber, A. et al. Identification of a SIRT1 mutation in a family with type 1 diabetes. Cell Metab. 17, 448–455 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Husebye, E.S. & Anderson, M.S. Autoimmune polyendocrine syndromes: clues to type 1 diabetes pathogenesis. Immunity 32, 479–487 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Basu, A. et al. Proteome-wide prediction of acetylation substrates. Proc. Natl. Acad. Sci. USA 106, 13785–13790 (2009).
Article CAS PubMed PubMed Central Google Scholar