Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow (original) (raw)
Schlitzer, A. & Ginhoux, F. Organization of the mouse and human DC network. Curr. Opin. Immunol.26, 90–99 (2014). ArticleCASPubMed Google Scholar
Merad, M., Sathe, P., Helft, J., Miller, J. & Mortha, A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol.31, 563–604 (2013). ArticleCASPubMed Google Scholar
Schlitzer, A., McGovern, N. & Ginhoux, F. Dendritic cells and monocyte-derived cells: Two complementary and integrated functional systems. Semin. Cell Dev. Biol.doi:10.1016/j.semcdb.2015.03.011 (2015).
Karsunky, H., Merad, M. & Cozzio, A. Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. J. Exp. Med.198, 305–313 (2003). ArticleCASPubMedPubMed Central Google Scholar
Fogg, D.K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science311, 83–87 (2006). ArticleCASPubMed Google Scholar
Naik, S.H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol.8, 1217–1226 (2007). ArticleCASPubMed Google Scholar
Onai, N. et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat. Immunol.8, 1207–1216 (2007). ArticleCASPubMed Google Scholar
Sathe, P. et al. Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophage-dendritic cell-Restricted progenitor. Immunity41, 104–115 (2014). ArticleCASPubMed Google Scholar
Liu, K. & Nussenzweig, M.C. Development and homeostasis of dendritic cells. Eur. J. Immunol.40, 2099–2102 (2010). ArticleCASPubMed Google Scholar
Onai, N. et al. A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential. Immunity38, 943–957 (2013). ArticleCASPubMed Google Scholar
Swiecki, M. et al. Cell depletion in mice that express diphtheria toxin receptor under the control of SiglecH encompasses more than plasmacytoid dendritic cells. J. Immunol.192, 4409–4416 (2014). ArticleCASPubMed Google Scholar
Kucharczak, J., Simmons, M.J., Fan, Y. & Gélinas, C. To be, or not to be: NF-κB is the answer–role of Rel/NF-κB in the regulation of apoptosis. Oncogene22, 8961–8982 (2003). ArticleCASPubMed Google Scholar
LeibundGut-Landmann, S. et al. Mini-review: Specificity and expression of CIITA, the master regulator of MHC class II genes. Eur. J. Immunol.34, 1513–1525 (2004). ArticleCASPubMed Google Scholar
Gautier, E.L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol.13, 1118–1128 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science313, 1929–1935 (2006). ArticleCASPubMed Google Scholar
Schlitzer, A. et al. Tissue-specific differentiation of a circulating CCR9− pDC-like common dendritic cell precursor. Blood119, 6063–6071 (2012). ArticleCASPubMed Google Scholar
Satpathy, A.T. et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med.209, 1135–1152 (2012). ArticleCASPubMedPubMed Central Google Scholar
Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity38, 970–983 (2013). ArticleCASPubMedPubMed Central Google Scholar
Persson, E.K. et al. IRF4 transcription-factor-dependent CD103+CD11b+ dendritic cells drive mucosal T helper 17 cell differentiation. Immunity38, 958–969 (2013). ArticleCASPubMed Google Scholar
Cisse, B. et al. Transcription factor E2–2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell135, 37–48 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell132, 487–498 (2008). ArticleCASPubMed Google Scholar
Tenenbaum, J.B., de Silva, V. & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science290, 2319–2323 (2000). ArticleCASPubMed Google Scholar
Naik, S.H. et al. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature496, 229–232 (2013). ArticleCASPubMed Google Scholar
Besson, A., Dowdy, S.F. & Roberts, J.M. CDK inhibitors: cell cycle regulators and beyond. Dev. Cell14, 159–169 (2008). ArticleCASPubMed Google Scholar
Meister, P., Mango, S.E. & Gasser, S.M. Locking the genome: nuclear organization and cell fate. Curr. Opin. Genet. Dev.21, 167–174 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science322, 1097–1100 (2008). CASPubMedPubMed Central Google Scholar
Kashiwada, M., Pham, N.-L.L., Pewe, L.L., Harty, J.T. & Rothman, P.B. NFIL3/E4BP4 is a key transcription factor for CD8α+ dendritic cell development. Blood117, 6193–6197 (2011). ArticleCASPubMedPubMed Central Google Scholar
Mendelson, A. & Frenette, P.S. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat. Med.20, 833–846 (2014). ArticleCASPubMedPubMed Central Google Scholar
Prendergast, A.M. & Essers, M.A.G. Hematopoietic stem cells, infection, and the niche. Ann. NY Acad. Sci.1310, 51–57 (2014). ArticleCASPubMed Google Scholar
Essers, M.A.G. et al. IFNalpha activates dormant haematopoietic stem cells in vivo. Nature458, 904–908 (2009). ArticleCASPubMed Google Scholar
Baldridge, M.T., King, K.Y., Boles, N.C., Weksberg, D.C. & Goodell, M.A. Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature465, 793–797 (2010). ArticleCASPubMedPubMed Central Google Scholar
Challen, G.A., Boles, N.C., Chambers, S.M. & Goodell, M.A. Distinct hematopoietic stem cell subtypes are differentially regulated by TGF-β1. Cell Stem Cell6, 265–278 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mercher, T. et al. Notch signaling specifies megakaryocyte development from hematopoietic stem cells. Cell Stem Cell3, 314–326 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lewis, K.L. et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity35, 780–791 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wu, L. et al. RelB is essential for the development of myeloid-related CD8α− dendritic cells but not of lymphoid-related CD8α+ dendritic cells. Immunity9, 839–847 (1998). ArticleCASPubMed Google Scholar
Kabashima, K. et al. Intrinsic lymphotoxin-β receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity22, 439–450 (2005). ArticleCASPubMed Google Scholar
Satpathy, A.T. et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat. Immunol.14, 937–948 (2013). ArticleCASPubMedPubMed Central Google Scholar
Gatto, D. et al. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nat. Immunol.14, 446–453 (2013). ArticleCASPubMed Google Scholar
Yi, T. & Cyster, J.G. EBI2-mediated bridging channel positioning supports splenic dendritic cell homeostasis and particulate antigen capture. eLife2, e00757 (2013). ArticlePubMedPubMed Central Google Scholar
Gentleman, R., Carey, V., Huber, W., Irizarry, R. & Dudoit, S. Bioinformatics and computational biology solutions using R and Bioconductor. Brief. Bioinformatics8, 136–137 (2006). Article Google Scholar
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics29, 15–21 (2013). CASPubMed Google Scholar
Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods5, 621–628 (2008). ArticleCASPubMed Google Scholar
Pollen, A.A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol.32, 1053–1058 (2014). ArticleCASPubMedPubMed Central Google Scholar
Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci.18, 145–153 (2015). ArticleCASPubMed Google Scholar
Shalek, A.K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature510, 1–22 (2014). ArticleCAS Google Scholar
Shalek, A.K. et al. Single-cell transcriptomics reveals bimodality inexpression and splicing in immune cells. Nature498, 236–240 (2014). ArticleCAS Google Scholar
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol.32, 381–386 (2014). ArticleCASPubMedPubMed Central Google Scholar
Ward, J.T.J. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc.58, 236–244 (1963). Article Google Scholar