Regulatory functions of ubiquitination in the immune system (original) (raw)
Hershko, A., Ciechanover, A. & Varshavsky, A. Basic Medical Research Award. The ubiquitin system. Nature Med.6, 1073–1081 (2000). CASPubMed Google Scholar
Ciechanover, A., Orian, A. & Schwartz, A. L. Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays22, 442–451 (2000). CASPubMed Google Scholar
Hochstrasser, M. Evolution and function of ubiquitin-like protein-conjugation systems. Nature Cell. Biol.2, 153–157 (2000). Google Scholar
Jentsch, S. & Pyrowolakis, G. Ubiquitin and its kin: how close are the family ties? Trends Cell Biol.10, 335–342 (2000). CASPubMed Google Scholar
Read, M. A. et al. Nedd8 modification of cul-1 activates SCFβ–TrCP -dependent ubiquitination of IκBα. Mol. Cell. Biol.20, 2326–2333 (2000). CASPubMedPubMed Central Google Scholar
Hay, R. T. Protein modification by SUMO. Trends Biochem. Sci.26, 332–333 (2001). CASPubMed Google Scholar
Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell88, 97–107 (1997). CASPubMed Google Scholar
Jackson, P. K. et al. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol.10, 429–439 (2000). CASPubMed Google Scholar
Weissman, A. M. Themes and variations on ubiquitylation. Nature Rev. Mol. Cell. Biol.2, 169–178 (2001). CAS Google Scholar
Deshaies, R. J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell. Dev. Biol.15, 435–467 (1999). CASPubMed Google Scholar
Zachariae, W. & Nasmyth, K. Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev.13, 2039–2058 (1999). CASPubMed Google Scholar
Kondo, K. & Kaelin, W. G. Jr The von Hippel-Lindau tumor suppressor gene. Exp. Cell. Res.264, 117–125 (2001). CASPubMed Google Scholar
Hatakeyama, S., Yada, M., Matsumoto, M., Ishida, N. & Nakayama, K. I. U box proteins as a new family of ubiquitin-protein ligases. J. Biol. Chem.276, 33111–33120 (2001). CASPubMed Google Scholar
Yewdell, J. W. Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. Trends Cell Biol.11, 294–297 (2001). CASPubMed Google Scholar
Kloetzel, P. M. Antigen processing by the proteasome. Nature Rev. Mol. Cell. Biol.2, 179–187 (2001). CAS Google Scholar
Baeuerle, P. A. & Baltimore, D. NF-κB: ten years after. Cell87, 13–20 (1996). CASPubMed Google Scholar
Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol.16, 225–260 (1998). CASPubMed Google Scholar
Baldwin, A. S. Jr Series introduction: the transcription factor NF-κB and human disease. J. Clin. Invest.107, 3–6 (2001). CASPubMedPubMed Central Google Scholar
Silverman, N. & Maniatis, T. NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev.15, 2321–2342 (2001). CASPubMed Google Scholar
Sha, W. C., Liou, H. C., Tuomanen, E. I. & Baltimore, D. Targeted disruption of the p50 subunit of NF-κB B leads to multifocal defects in immune responses. Cell80, 321–330 (1995). CASPubMed Google Scholar
Ishikawa, H. et al. Chronic inflammation and susceptibility to bacterial infections in mice lacking the polypeptide (p)105 precursor NF-κB but expressing p50. J. Exp. Med.187, 985–996 (1998). CASPubMedPubMed Central Google Scholar
Lavon, I. et al. High susceptibility to bacterial infection, but no liver dysfunction, in mice compromised for hepatocyte NF-κB activation. Nature Med.6, 573–577 (2000). CASPubMed Google Scholar
Mansour, S. et al. Incontinentia pigmenti in a surviving male is accompanied by hypohidrotic ectodermal dysplasia and recurrent infection. Am. J. Med. Genet.99, 172–177 (2001). CASPubMed Google Scholar
Boothby, M. R., Mora, A. L., Scherer, D. C., Brockman, J. A. & Ballard, D. W. Perturbation of the T lymphocyte lineage in transgenic mice expressing a constitutive repressor of nuclear factor NF-κB. J. Exp. Med.185, 1897–1907 (1997). CASPubMedPubMed Central Google Scholar
Hettmann, T., DiDonato, J., Karin, M. & Leiden, J. M. An essential role for NF-κB in promoting double positive thymocyte apoptosis. J. Exp. Med.189, 145–158 (1999). CASPubMedPubMed Central Google Scholar
Grossmann, M. et al. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J.19, 6351–6360 (2000). CASPubMedPubMed Central Google Scholar
Voll, R. E. et al. NF-κB activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity13, 677–689 (2000). CASPubMed Google Scholar
Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol.18, 621–663 (2000). CASPubMed Google Scholar
Yaron, A. et al. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature396, 590–594 (1998). CASPubMed Google Scholar
Winston, J. T. et al. The SCF β-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev.13, 270–283 (1999). CASPubMedPubMed Central Google Scholar
Spencer, E., Jiang, J. & Chen, Z. J. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev.13, 284–294 (1999). CASPubMedPubMed Central Google Scholar
Hattori, K., Hatakeyama, S., Shirane, M., Matsumoto, M. & Nakayama, K. Molecular dissection of the interactions among pIκBα, FWD1, and Skp1 required for ubiquitin-mediated proteolysis of pIκBα. J. Biol. Chem.274, 29641–29647 (1999). CASPubMed Google Scholar
Kroll, M. et al. Inducible degradation of pIκBα by the proteasome requires interaction with the F-box protein h-β-TrCP. J. Biol. Chem.274, 7941–7945 (1999). CASPubMed Google Scholar
Yaron, A. et al. Inhibition of NF-κB cellular function via specific targeting of the IκB-ubiquitin ligase. EMBO J.16, 6486–6494 (1997). CASPubMedPubMed Central Google Scholar
Arenzana-Seisdedos, F. et al. Nuclear localization of IκBα promotes active transport of NF-κB from the nucleus to the cytoplasm. J. Cell Sci.110, 369–378 (1997). CASPubMed Google Scholar
Huang, T. T., Kudo, N., Yoshida, M. & Miyamoto, S. A nuclear export signal in the N-terminal regulatory domain of pIκBα controls cytoplasmic localization of inactive NF-κB/IκBα complexes. Proc. Natl Acad. Sci. USA97, 1014–1019 (2000). CASPubMedPubMed Central Google Scholar
Johnson, C., Van Antwerp, D. & Hope, T. J. An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of pIκBα. EMBO J.18, 6682–6693 (1999). CASPubMedPubMed Central Google Scholar
Malek, S., Chen, Y., Huxford, T. & Ghosh, G. IκBβ, but not pIκBα, functions as a classical cytoplasmic inhibitor of NF-κB dimers by masking both NF-κB nuclear localization sequences in resting cells. J. Biol. Chem.276, 45225–45235 (2001). CASPubMed Google Scholar
Tam, W. F. & Sen, R. IκB family members function by different mechanisms. J. Biol. Chem.276, 7701–7704 (2001). CASPubMed Google Scholar
Wilkinson, K. D. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin. Cell. Dev. Biol.11, 141–148 (2000). CASPubMed Google Scholar
Neish, A. S. et al. Prokaryotic regulation of epithelial responses by inhibition of pIκBα ubiquitination. Science289, 1560–1503 (2000). CASPubMed Google Scholar
Lin, L., DeMartino, G. N. & Greene, W. C. Cotranslational biogenesis of NF-κB p50 by the 26S proteasome. Cell92, 819–828 (1998). CASPubMed Google Scholar
Ciechanover, A. et al. Mechanisms of ubiquitin-mediated, limited processing of the NF-κB1 precursor protein p105. Biochimie83, 341–349 (2001). CASPubMed Google Scholar
Orian, A. et al. SCFβ–TrCP ubiquitin ligase-mediated processing of NF-κB p105 requires phosphorylation of its C-terminus by IκB kinase. EMBO J.19, 2580–2591 (2000). CASPubMedPubMed Central Google Scholar
Heissmeyer, V., Krappmann, D., Hatada, E. N. & Scheidereit, C. Shared pathways of IκB kinase-induced SCFβ–TrC-mediated ubiquitination and degradation for the NF-κB precursor p105 and pIκBα. Mol. Cell. Biol.21, 1024–1035 (2001). CASPubMedPubMed Central Google Scholar
Orian, A. et al. Structural motifs involved in ubiquitin-mediated processing of the NF-κB precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain. Mol. Cell. Biol.19, 3664–3673 (1999). CASPubMedPubMed Central Google Scholar
Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science293, 1495–1499 (2001). CASPubMed Google Scholar
Lin, L. & Ghosh, S. A glycine-rich region in NF-κB p105 functions as a processing signal for the generation of the p50 subunit. Mol. Cell. Biol.16, 2248–22454 (1996). CASPubMedPubMed Central Google Scholar
Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A. & Masucci, M. G. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc. Natl Acad. Sci. USA94, 12616–12621 (1997). CASPubMedPubMed Central Google Scholar
Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell102, 577–586 (2000). CASPubMed Google Scholar
Sears, C., Olesen, J., Rubin, D., Finley, D. & Maniatis, T. NF-κB p105 processing via the ubiquitin-proteasome pathway. J. Biol. Chem.273, 1409–1419 (1998). CASPubMed Google Scholar
Silverman, N. et al. A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev.14, 2461–2471 (2000). CASPubMedPubMed Central Google Scholar
Stoven, S., Ando, I., Kadalayil, L., Engstrom, Y. & Hultmark, D. Activation of the Drosophila NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Rep.1, 347–352 (2000). CASPubMedPubMed Central Google Scholar
Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep.1, 353–358 (2000). CASPubMedPubMed Central Google Scholar
O'Neill, L. A. & Dinarello, C. A. The IL-1 receptor/toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol. Today21, 206–209 (2000). CASPubMed Google Scholar
Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell103, 351–361 (2000). CASPubMed Google Scholar
Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature412, 346–351 (2001). CASPubMed Google Scholar
Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell96, 645–653 (1999). CASPubMed Google Scholar
Takayanagi, H. et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross- talk between RANKL and IFN-γ. Nature408, 600–605 (2000). CASPubMed Google Scholar
Yamaguchi, K. et al. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J.18, 179–187 (1999). CASPubMedPubMed Central Google Scholar
Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science288, 874–877 (2000). CASPubMed Google Scholar
Chen, Z. J., Parent, L. & Maniatis, T. Site-specific phosphorylation of pIκBα by a novel ubiquitination- dependent protein kinase activity. Cell84, 853–862 (1996). CASPubMed Google Scholar
Pawson, T. & Nash, P. Protein-protein interactions define specificity in signal transduction. Genes Dev.14, 1027–1047 (2000). CASPubMed Google Scholar
Hicke, L. A new ticket for entry into budding vesicles-ubiquitin. Cell106, 527–530 (2001). CASPubMed Google Scholar
Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell106, 145–155 (2001). CASPubMed Google Scholar
Rocca, A., Lamaze, C., Subtil, A. & Dautry-Varsat, A. Involvement of the ubiquitin/proteasome system in sorting of the interleukin 2 receptor β chain to late endocytic compartments. Mol. Biol. Cell.12, 1293–1301 (2001). CASPubMedPubMed Central Google Scholar
Thien, C. B. & Langdon, W. Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nature Rev. Mol. Cell. Biol.2, 294–307 (2001). CAS Google Scholar
Yoon, C. H., Lee, J., Jongeward, G. D. & Sternberg, P. W. Similarity of sli-1, a regulator of vulval development in C. elegans, to the mammalian proto-oncogene c-cbl. Science269, 1102–1105 (1995). CASPubMed Google Scholar
Ota, Y. & Samelson, L. E. The product of the proto-oncogene c-cbl: a negative regulator of the Syk tyrosine kinase. Science276, 418–420 (1997). CASPubMed Google Scholar
Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell.4, 1029–1040 (1999). CASPubMed Google Scholar
Joazeiro, C. A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2- dependent ubiquitin-protein ligase. Science286, 309–312 (1999). CASPubMed Google Scholar
Lee, P. S. et al. The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J.18, 3616–3628 (1999). CASPubMedPubMed Central Google Scholar
Fang, D. & Liu, Y. C. Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nature Immunol.2, 870–875 (2001). CAS Google Scholar
Rudd, C. E. & Schneider, H. Lymphocyte signaling: Cbl sets the threshold for autoimmunity. Curr. Biol.10, R344–347 (2000). Google Scholar
Chiang, Y. J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature403, 216–220 (2000). CASPubMed Google Scholar
Krawczyk, C. et al. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity13, 463–473 (2000). CASPubMed Google Scholar
Krawczyk, C. & Penninger, J. M. Molecular controls of antigen receptor clustering and autoimmunity. Trends Cell Biol.11, 212–220 (2001). CASPubMed Google Scholar
Fang, D. et al. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3- kinase for ubiquitination in T cells. J. Biol. Chem.276, 4872–4878 (2001). CASPubMed Google Scholar
D'Andrea, A. & Pellman, D. Deubiquitinating enzymes: a new class of biological regulators. Crit. Rev. Biochem. Mol. Biol.33, 337–352 (1998). CASPubMed Google Scholar
Migone, T. S. et al. The deubiquitinating enzyme DUB-2 prolongs cytokine-induced signal transducers and activators of transcription activation and suppresses apoptosis following cytokine withdrawal. Blood98, 1935–1941 (2001). CASPubMed Google Scholar
Yasukawa, H., Sasaki, A. & Yoshimura, A. Negative regulation of cytokine signaling pathways. Annu. Rev. Immunol.18, 143–164 (2000). CASPubMed Google Scholar
Sporri, B., Kovanen, P. E., Sasaki, A., Yoshimura, A. & Leonard, W. J. JAB/SOCS1/SSI-1 is an interleukin-2-induced inhibitor of IL-2 signaling. Blood97, 221–226 (2001). CASPubMed Google Scholar
Krebs, D. L. & Hilton, D. J. Socs proteins: negative regulators of cytokine signaling. Stem Cells19, 378–387 (2001). CASPubMed Google Scholar
De Sepulveda, P., Ilangumaran, S. & Rottapel, R. Suppressor of cytokine signaling-1 inhibits VAV function through protein degradation. J. Biol. Chem.275, 14005–14008 (2000). CASPubMed Google Scholar
Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature414, 514–521 (2001). CASPubMed Google Scholar