Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27–stimulated T cells (original) (raw)
Lucas, S., Ghilardi, N., Li, J. & de Sauvage, F.J. IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc. Natl. Acad. Sci. USA100, 15047–15052 (2003). ArticleCASPubMedPubMed Central Google Scholar
Owaki, T., Asakawa, M., Fukai, F., Mizuguchi, J. & Yoshimoto, T. IL-27 induces Th1 differentiation via p38 MAPK/T-bet- and intercellular adhesion molecule-1/LFA-1/ERK1/2-dependent pathways. J. Immunol.177, 7579–7587 (2006). ArticleCASPubMed Google Scholar
Owaki, T. et al. A role for IL-27 in early regulation of Th1 differentiation. J. Immunol.175, 2191–2200 (2005). ArticleCASPubMed Google Scholar
Takeda, A. et al. Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J. Immunol.170, 4886–4890 (2003). ArticleCASPubMed Google Scholar
Miyazaki, Y. et al. Exacerbation of experimental allergic asthma by augmented Th2 responses in WSX-1-deficient mice. J. Immunol.175, 2401–2407 (2005). ArticleCASPubMed Google Scholar
Rosas, L.E. et al. Interleukin-27R (WSX-1/T-cell cytokine receptor) gene-deficient mice display enhanced resistance to Leishmania donovani infection but develop severe liver immunopathology. Am. J. Pathol.168, 158–169 (2006). ArticleCASPubMedPubMed Central Google Scholar
Villarino, A. et al. The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection. Immunity19, 645–655 (2003). ArticleCASPubMed Google Scholar
Amadi-Obi, A. et al. TH17 cells contribute to uveitis and scleritis and are expanded by IL-2 and inhibited by IL-27/STAT1. Nat. Med.13, 711–718 (2007). ArticleCASPubMed Google Scholar
Batten, M. et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17–producing T cells. Nat. Immunol.7, 929–936 (2006). ArticleCASPubMed Google Scholar
Stumhofer, J.S. et al. Interleukin 27 negatively regulates the development of interleukin 17–producing T helper cells during chronic inflammation of the central nervous system. Nat. Immunol.7, 937–945 (2006). ArticleCASPubMed Google Scholar
Pflanz, S. et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity16, 779–790 (2002). ArticleCASPubMed Google Scholar
Pflanz, S. et al. WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J. Immunol.172, 2225–2231 (2004). ArticleCASPubMed Google Scholar
Larousserie, F. et al. Differential effects of IL-27 on human B cell subsets. J. Immunol.176, 5890–5897 (2006). ArticleCASPubMed Google Scholar
Villarino, A.V. et al. Positive and negative regulation of the IL-27 receptor during lymphoid cell activation. J. Immunol.174, 7684–7691 (2005). ArticleCASPubMed Google Scholar
Wirtz, S. et al. Protection from lethal septic peritonitis by neutralizing the biological function of interleukin 27. J. Exp. Med.203, 1875–1881 (2006). ArticleCASPubMedPubMed Central Google Scholar
Owaki, T. et al. IL-27 suppresses CD28-mediated IL-2 production through suppressor of cytokine signaling 3. J. Immunol.176, 2773–2780 (2006). ArticleCASPubMed Google Scholar
Villarino, A.V. et al. IL-27 limits IL-2 production during Th1 differentiation. J. Immunol.176, 237–247 (2006). ArticleCASPubMed Google Scholar
Yoshimura, T. et al. Two-sided roles of IL-27: induction of Th1 differentiation on naive CD4+ T cells versus suppression of proinflammatory cytokine production including IL-23-induced IL-17 on activated CD4+ T cells partially through STAT3-dependent mechanism. J. Immunol.177, 5377–5385 (2006). ArticleCASPubMed Google Scholar
Hamano, S. et al. WSX-1 is required for resistance to Trypanosoma cruzi infection by regulation of proinflammatory cytokine production. Immunity19, 657–667 (2003). ArticleCASPubMed Google Scholar
Endharti, A.T. et al. Cutting edge: CD8+CD122+ regulatory T cells produce IL-10 to suppress IFN-γ production and proliferation of CD8+ T cells. J. Immunol.175, 7093–7097 (2005). ArticleCASPubMed Google Scholar
Chen, W. et al. Conversion of peripheral CD4+CD25− naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med.198, 1875–1886 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zheng, S.G., Wang, J.H., Gray, J.D., Soucier, H. & Horwitz, D.A. Natural and induced CD4+CD25+ cells educate CD4+CD25− cells to develop suppressive activity: the role of IL-2, TGF-β, and IL-10. J. Immunol.172, 5213–5221 (2004). ArticleCASPubMed Google Scholar
Sullivan, B.M., Juedes, A., Szabo, S.J., von Herrath, M. & Glimcher, L.H. Antigen-driven effector CD8 T cell function regulated by T-bet. Proc. Natl. Acad. Sci. USA100, 15818–15823 (2003). ArticleCASPubMedPubMed Central Google Scholar
Szabo, S.J. et al. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell100, 655–669 (2000). ArticleCASPubMed Google Scholar
Maeda, H. et al. TGF-β enhances macrophage ability to produce IL-10 in normal and tumor-bearing mice. J. Immunol.155, 4926–4932 (1995). CASPubMed Google Scholar
Sullivan, B.M. et al. Increased susceptibility of mice lacking T-bet to infection with Mycobacterium tuberculosis correlates with increased IL-10 and decreased IFN-γ production. J. Immunol.175, 4593–4602 (2005). ArticleCASPubMed Google Scholar
Morris, S.C. et al. Effects of IL-12 on in vivo cytokine gene expression and Ig isotype selection. J. Immunol.152, 1047–1056 (1994). CASPubMed Google Scholar
McRae, B.L., Picker, L.J. & van Seventer, G.A. Human recombinant interferon-beta influences T helper subset differentiation by regulating cytokine secretion pattern and expression of homing receptors. Eur. J. Immunol.27, 2650–2656 (1997). ArticleCASPubMed Google Scholar
Fitzgerald, D.C. et al. Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis. J. Immunol.179, 3268–3275 (2007). ArticleCASPubMed Google Scholar
Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med.201, 233–240 (2005). ArticleCASPubMedPubMed Central Google Scholar
Harrington, L.E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol.6, 1123–1132 (2005). ArticleCASPubMed Google Scholar
Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol.6, 1133–1141 (2005). ArticleCASPubMedPubMed Central Google Scholar
Taga, K. & Tosato, G. IL-10 inhibits human T cell proliferation and IL-2 production. J. Immunol.148, 1143–1148 (1992). CASPubMed Google Scholar
Deshpande, P., King, I.L. & Segal, B.M. IL-12 driven upregulation of P-selectin ligand on myelin-specific T cells is a critical step in an animal model of autoimmune demyelination. J. Neuroimmunol.173, 35–44 (2006). ArticleCASPubMed Google Scholar
Ito, A. et al. Transfer of severe experimental autoimmune encephalomyelitis by IL-12- and IL-18-potentiated T cells is estrogen sensitive. J. Immunol.170, 4802–4809 (2003). ArticleCASPubMed Google Scholar
Bettelli, E. et al. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J. Immunol.161, 3299–3306 (1998). CASPubMed Google Scholar
Samoilova, E.B., Horton, J.L. & Chen, Y. Acceleration of experimental autoimmune encephalomyelitis in interleukin-10-deficient mice: roles of interleukin-10 in disease progression and recovery. Cell. Immunol.188, 118–124 (1998). ArticleCASPubMed Google Scholar
Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity24, 179–189 (2006). ArticleCASPubMed Google Scholar
Wirtz, S. et al. EBV-induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-κB activation. J. Immunol.174, 2814–2824 (2005). ArticleCASPubMed Google Scholar
Moore, K.W., de Waal Malefyt, R., Coffman, R.L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol.19, 683–765 (2001). ArticleCASPubMed Google Scholar
Anderson, C.F., Oukka, M., Kuchroo, V.J. & Sacks, D. CD4+CD25−Foxp3− Th1 cells are the source of IL-10-mediated immune suppression in chronic cutaneous leishmaniasis. J. Exp. Med.204, 285–297 (2007). ArticleCASPubMedPubMed Central Google Scholar
Jankovic, D. et al. Conventional T-bet+Foxp3− Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. J. Exp. Med.204, 273–283 (2007). ArticleCASPubMedPubMed Central Google Scholar
Roers, A. et al. T cell-specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation. J. Exp. Med.200, 1289–1297 (2004). ArticleCASPubMedPubMed Central Google Scholar
O'Garra, A. & Vieira, P. T(H)1 cells control themselves by producing interleukin-10. Nat. Rev. Immunol.7, 425–428 (2007). ArticleCASPubMed Google Scholar