Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis (original) (raw)
Zeisberg, M. & Kalluri, R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am. J. Physiol. Cell Physiol.304, C216–C225 (2013). ArticleCASPubMed Google Scholar
Zeisberg, M. & Kalluri, R. Fibroblasts emerge via epithelial-mesenchymal transition in chronic kidney fibrosis. Front. Biosci.13, 6991–6998 (2008). ArticleCASPubMed Google Scholar
Zeisberg, E.M. et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J. Am. Soc. Nephrol.19, 2282–2287 (2008). ArticlePubMedPubMed Central Google Scholar
Lamouille, S., Xu, J. & Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol.15, 178–196 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lee, K. & Nelson, C.M. New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. Int. Rev. Cell Mol. Biol.294, 171–221 (2012). ArticleCASPubMed Google Scholar
Zeisberg, M. et al. Renal fibrosis: collagen composition and assembly regulates epithelial-mesenchymal transdifferentiation. Am. J. Pathol.159, 1313–1321 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zeisberg, M. et al. Renal fibrosis. Extracellular matrix microenvironment regulates migratory behavior of activated tubular epithelial cells. Am. J. Pathol.160, 2001–2008 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zeisberg, M. & Kalluri, R. The role of epithelial-to-mesenchymal transition in renal fibrosis. J. Mol. Med. (Berl)82, 175–181 (2004). Article Google Scholar
Burns, W.C., Kantharidis, P. & Thomas, M.C. The role of tubular epithelial-mesenchymal transition in progressive kidney disease. Cells Tissues Organs185, 222–231 (2007). ArticleCASPubMed Google Scholar
Teng, Y., Zeisberg, M. & Kalluri, R. Transcriptional regulation of epithelial-mesenchymal transition. J. Clin. Invest.117, 304–306 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kida, Y. et al. Twist relates to tubular epithelial-mesenchymal transition and interstitial fibrogenesis in the obstructed kidney. J. Histochem. Cytochem.55, 661–673 (2007). ArticleCASPubMed Google Scholar
Strutz, F. et al. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int.61, 1714–1728 (2002). ArticleCASPubMed Google Scholar
Rastaldi, M.P. Epithelial-mesenchymal transition and its implications for the development of renal tubulointerstitial fibrosis. J. Nephrol.19, 407–412 (2006). CASPubMed Google Scholar
Kriz, W., Kaissling, B. & Le Hir, M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J. Clin. Invest.121, 468–474 (2011). ArticleCASPubMedPubMed Central Google Scholar
Zeisberg, M. & Duffield, J.S. Resolved: EMT produces fibroblasts in the kidney. J. Am. Soc. Nephrol.21, 1247–1253 (2010). ArticlePubMed Google Scholar
Liu, Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J. Am. Soc. Nephrol.21, 212–222 (2010). ArticleCASPubMed Google Scholar
Canaud, G. & Bonventre, J.V. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol. Dial. Transplant.30, 575–583 (2015). ArticleCASPubMed Google Scholar
Kang, H.M. et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med.21, 37–46 (2015). ArticleCASPubMed Google Scholar
Rajasekaran, S.A. et al. Na,K-ATPase subunits as markers for epithelial-mesenchymal transition in cancer and fibrosis. Mol. Cancer Ther.9, 1515–1524 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ito, S. et al. Reduction of indoxyl sulfate by AST-120 attenuates monocyte inflammation related to chronic kidney disease. J. Leukoc. Biol.93, 837–845 (2013). ArticleCASPubMed Google Scholar
Lui, T. et al. Changes in expression of renal Oat1, Oat3 and Mrp2 in cisplatin-induced acute renal failure after treatment of JBP485 in rats. Toxicol. Appl. Pharmacol.264, 423–430 (2012). ArticleCAS Google Scholar
Hills, C.E., Willars, G.B. & Brunskill, N.J. Proinsulin C-peptide antagonizes the profibrotic effects of TGF-β1 via up-regulation of retinoic acid and HGF-related signaling pathways. Mol. Endocrinol.24, 822–831 (2010). ArticleCASPubMedPubMed Central Google Scholar
Schmid, H. et al. Modular activation of nuclear factor-κB transcriptional programs in human diabetic nephropathy. Diabetes55, 2993–3003 (2006). ArticleCASPubMed Google Scholar
Hodgin, J.B. et al. A molecular profile of focal segmental glomerulosclerosis from formalin-fixed, paraffin-embedded tissue. Am. J. Pathol.177, 1674–1686 (2010). ArticleCASPubMedPubMed Central Google Scholar
Stern, R. et al. Lactate stimulates fibroblast expression of hyaluronan and CD44: the Warburg effect revisited. Exp. Cell Res.276, 24–31 (2002). ArticleCASPubMed Google Scholar
Maeda, T. et al. Mechanism of the regulation of organic cation/carnitine transporter 1 (SLC22A4) by rheumatoid arthritis-associated transcriptional factor RUNX1 and inflammatory cytokines. Drug Metab. Dispos.35, 394–401 (2007). ArticleCASPubMed Google Scholar
Toyohara, T. et al. SLCO4C1 transporter eliminates uremic toxins and attenuates hypertension and renal inflammation. J. Am. Soc. Nephrol.20, 2546–2555 (2009). ArticleCASPubMedPubMed Central Google Scholar
Witzgall, R. et al. Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J. Clin. Invest.93, 2175–2188 (1994). ArticleCASPubMedPubMed Central Google Scholar
Duffield, J.S. et al. Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J. Clin. Invest.115, 1743–1755 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wu, C.F. et al. Transforming growth factor beta-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am. J. Pathol.182, 118–131 (2013). ArticleCASPubMedPubMed Central Google Scholar
Megyesi, J. et al. The lack of a functional p21(WAF1/CIP1) gene ameliorates progression to chronic renal failure. Proc. Natl. Acad. Sci. USA96, 10830–10835 (1999). ArticleCASPubMedPubMed Central Google Scholar
Cooke, V.G. et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell21, 66–81 (2012). ArticleCASPubMedPubMed Central Google Scholar
LeBleu, V.S. et al. Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis. Nat. Med.19, 227–231 (2013). ArticleCASPubMedPubMed Central Google Scholar
Smyth, G.K. Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor. (Springer, 2005).
Haverty, T.P. et al. Characterization of a renal tubular epithelial cell line which secretes the autologous target antigen of autoimmune experimental interstitial nephritis. J. Cell Biol.107, 1359–1368 (1988). ArticleCASPubMed Google Scholar
Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell117, 927–939 (2004). ArticleCASPubMed Google Scholar
Olive, P.L. & Banath, J.P. The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc.1, 23–29 (2006). ArticleCASPubMed Google Scholar