Owen, R.D. Immunogenetic consequences of vascular anastomoses between bovine twins. Science102, 400–401 (1945). ArticleCASPubMed Google Scholar
Billingham, R.E., Brent, L. & Medawar, P.B. Actively acquired tolerance of foreign cells. Nature172, 603–606 (1953). ArticleCASPubMed Google Scholar
Murray, J.E., Merrill, J.P. & Harrison, J.H. Renal homotransplantation in identical twins. Surg. Forum6, 432 (1955). Google Scholar
Port, F., Wolfe, R., Mauger, E., Berling, D. & Jiang, K. Comparison of Survival Probablities for Dialysis Pateints vs Cadeveric Renal Transplant Recipients. J. Am. Med. Assoc.270, 1339–1343 (1993). ArticleCAS Google Scholar
Meier-Kriesche, H.U., Schold, J.D. & Kaplan, B. Long-term renal allograft survival: have we made significant progress or is it time to rethink our analytic and therapeutic strategies? Am. J. Transplant.4, 1289–1295 (2004). ArticlePubMed Google Scholar
Suchin, E.J. et al. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J. Immunol.166, 973–981 (2001). ArticleCASPubMed Google Scholar
Opelz, G. Correlation of HLA matching with kidney graft survival in patients with or without cyclosporine treatment. Transplantation40, 240–243 (1985). ArticleCASPubMed Google Scholar
Cecka, J.M. The UNOS Renal Transplant Registry. in Clinical Transplants 2002 (ed. Cecka, J.M.a.T., P. I.) 1–20 (UCLA Immunogenetics Center, Los Angeles, 2002). Google Scholar
Goulmy, E., Gratama, J.W., Blokland, E., Zwaan, F.E. & van Rood, J.J. A minor transplantation antigen detected by MHC-restricted cytotoxic T lymphocytes during graft-versus-host disease. Nature302, 156–161 (1983). Article Google Scholar
Linsley, P.S., Clark, E.A. & Ledbetter, J.A. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc. Natl Acad. Sci. USA87, 5031–5035 (1990). ArticleCASPubMedPubMed Central Google Scholar
Freeman, G.J. et al. Uncovering of functional alternative CTLA-4 counter-receptor in B7-deficient mice. Science262, 907–909 (1993). ArticleCASPubMed Google Scholar
Durie, F.H. et al. Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40. Science261, 1328–1330 (1993). ArticleCASPubMed Google Scholar
Russell, P.S. et al. Tolerance, mixed chimerism, and chronic transplant arteriopathy. J. Immunol.167, 5731–5740 (2001). ArticleCASPubMed Google Scholar
Kirk, A.D. et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat. Med.5, 686–693 (1999). ArticleCASPubMed Google Scholar
Thomas, J.M. et al. Durable donor-specific T and B cell tolerance in rhesus macaques induced with peritransplantation anti-CD3 immunotoxin and deoxyspergualin: absence of chronic allograft nephropathy. Transplantation69, 2497–2503 (2000). ArticleCASPubMed Google Scholar
Kawai, T. et al. Long-term outcome and alloantibody production in a non-myeloablative regimen for induction of renal allograft tolerance. Transplantation68, 1767–1775 (1999). ArticleCASPubMed Google Scholar
Ildstad, S.T. & Sachs, D.H. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature307, 168–170 (1984). ArticleCASPubMed Google Scholar
Sharabi, Y. & Sachs, D.H. Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparativew regimen. J. Exp. Med.169, 493–502 (1989). ArticleCASPubMed Google Scholar
Kawai, T. et al. Mixed allogeneic chimerism and renal allograft tolerance in cynomolgus monkeys. Transplantation59, 256–262 (1995). ArticleCASPubMed Google Scholar
Spitzer, T.R. et al. Combined histocompatibility leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation68, 480–484 (1999). ArticleCASPubMed Google Scholar
Buhler, L.H. et al. Induction of kidney allograft tolerance after transient lymphohematopoietic chimerism in patients with multiple myeloma and end-stage renal disease. Transplantation74, 1405–1409 (2002). ArticlePubMed Google Scholar
Wekerle, T. et al. Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nat. Med.6, 464–469 (2000). ArticleCASPubMed Google Scholar
Durham, M.M. et al. Cutting edge: administration of anti-CD40 ligand and donor bone marrow leads to hemopoietic chimerism and donor-specific tolerance without cytoreductive conditioning. J. Immunol.165, 1–4 (2000). ArticleCASPubMed Google Scholar
June, C.H., Bluestone, J.A., Nadler, L.M. & Thompson, C.B. The B7 and CD28 receptor families. Immunol. Today15, 321–331 (1994). ArticleCASPubMed Google Scholar
Linsley, P.S. et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med.174, 561–569 (1991). ArticleCASPubMed Google Scholar
Lin, H. et al. Long-term acceptance of major histocompatibility complex mismatched cardiac allografts induced by CTLA4Ig plus donor-specific transfusion. J. Exp. Med.178, 1801–1806 (1993). ArticleCASPubMed Google Scholar
Larsen, C.P. et al. CD40-gp39 interactions play a critical role during allograft rejection: suppression of allograft rejection by blockade of the CD40-gp39 pathway. Transplantation61, 4–9 (1996). ArticleCASPubMed Google Scholar
Hancock, W.W. et al. Costimulatory function and expression of CD40-ligand, CD80, and CD86 in vascularized murine cardiac allograft rejection. Proc. Natl Acad. Sci. USA93, 13967–13972 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kirk, A. et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc. Natl Acad. Sci. USA94, 8789–8794 (1997). ArticleCASPubMedPubMed Central Google Scholar
Levisetti, M. et al. Immunosuppressive effects of hCTLA4Ig in a non-human primate model of allogeneic pancreatic islet transplantation. J. Immunol.159, 5187–5191 (1997). CASPubMed Google Scholar
Montgomery, S.P. et al. Combination induction therapy with monoclonal antibodies specific for CD80, CD86, and CD154 in nonhuman primate renal transplantation. Transplantation74, 1365–1369 (2002). ArticleCASPubMed Google Scholar
Kirk, A.D. et al. Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H). Transplantation76, 120–129 (2003). ArticleCASPubMed Google Scholar
Elzey, B.D. et al. Platelet-mediated modulation of adaptive immunity. A communication link between innate and adaptive immune compartments. Immunity19, 9–19 (2003). ArticleCASPubMed Google Scholar
Abrams, J.R. et al. CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J. Clin. Invest.103, 1243–1252 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kremer, J.M. et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N. Engl. J. Med.349, 1907–1915 (2003). ArticleCASPubMed Google Scholar
Larsen, C.P. et al. Rational development of LEA29Y (belatacept), a high affinity variant of CTLA4Ig with potent immunosuppressive properties. Am. J. Transplant.5, 443–453 (2005). ArticleCASPubMed Google Scholar
Rothstein, D.M. & Sayegh, M.H. T-cell costimulatory pathways in allograft rejection and tolerance. Immunol. Rev.196, 85–108 (2003). ArticleCASPubMed Google Scholar
Pearson, T.C., Madsen, J.C., Larsen, C.P., Morris, P.J. & Wood, K.J. Induction of transplantation tolerance in adults using donor antigen and anti-CD4 monoclonal antibody. Transplantation54, 475–483 (1992). ArticleCASPubMed Google Scholar
Walunas, T.L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity1, 405–413 (1994). ArticleCASPubMed Google Scholar
Freeman, G.J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med.192, 1027–1034 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ozkaynak, E. et al. Programmed death-1 targeting can promote allograft survival. J. Immunol.169, 6546–6553 (2002). ArticleCASPubMed Google Scholar
Li, Y. et al. Blocking both signal 1 and signal 2 of T-cell activation prevents apoptosis of alloreactive T cells and induction of peripheral allograft tolerance. Nat. Med.5, 1298–1302 (1999). ArticleCASPubMed Google Scholar
Dai, Z., Konieczny, B.T., Baddoura, F.K. & Lakkis, F.G. Impaired alloantigen-mediated T cell apoptosis and failure to induce long-term allograft survival in IL-2-deficient mice. J. Immunol.161, 1659–1663 (1998). CASPubMed Google Scholar
Larsen, C.P. et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature381, 434–438 (1996). ArticleCASPubMed Google Scholar
Wells, A.D. et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat. Med.5, 1303–1307 (1999). ArticleCASPubMed Google Scholar
Kurtz, J. et al. Mechanisms of early peripheral CD4 T-cell tolerance induction by anti-CD154 monoclonal antibody and allogeneic bone marrow transplantation: evidence for anergy and deletion but not regulatory cells. Blood103, 4336–4343 (2004). ArticleCASPubMed Google Scholar
Benjamin, R.J. & Waldmann, H. Induction of tolerance by monoclonal antibody therapy. Nature320, 449–451 (1986). ArticleCASPubMed Google Scholar
Waldmann, H. & Cobbold, S. Regulating the immune response to transplants. a role for CD4+ regulatory cells? Immunity14, 399–406 (2001). ArticleCASPubMed Google Scholar
Moses, R.D., Sundeen, J.T., Orr, K.S., Roberts, R.R. & Gress, R.E. Cardiac allograft survival across major histocompatibility complex barriers in the rhesus monkey following T lymphocyte-depleted autologous marrow transplantation. III. Late allograft rejection. Transplantation48, 769–773 (1989). ArticleCASPubMed Google Scholar
Holcombe, H., Mellman, I., Janeway, C.A., Jr, Bottomly, K. & Dittel, B.N. The immunosuppressive agent 15-deoxyspergualin functions by inhibiting cell cycle progression and cytokine production following naive T cell activation. J. Immunol.169, 4982–4989 (2002). ArticlePubMed Google Scholar
Armstrong, N. et al. Analysis of primate renal allografts after T-cell depletion with anti-CD3–CRM9. Transplantation66, 5–13 (1998). ArticleCASPubMed Google Scholar
Knechtle, S.J. et al. Campath-1H in renal transplantation: The University of Wisconsin experience. Surgery136, 754–760 (2004). ArticlePubMed Google Scholar
Kirk, A.D. et al. Results from a human tolerance trial using CAMPATH-1H with and without infliximab. Am. J. Transplant.2 Suppl 3, 379 (2002). Google Scholar
Pearl, J.P. et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am. J. Transplant.5, 465–474 (2005). ArticleCASPubMed Google Scholar
Tang, Q. et al. _In vitro_-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med.199, 1455–1465 (2004). ArticleCASPubMedPubMed Central Google Scholar
Munn, D.H. et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science297, 1867–1870 (2002). ArticleCASPubMed Google Scholar
Munn, D.H., Sharma, M.D. & Mellor, A.L. Ligation of B7–1/B7–2 by human CD4(+) T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells. J. Immunol.172, 4100–4110 (2004). ArticleCASPubMed Google Scholar
Mirenda, V. et al. Modified dendritic cells coexpressing self and allogeneic major histocompatability complex molecules: an efficient way to induce indirect pathway regulation. J. Am. Soc. Nephrol.15, 987–997 (2004). ArticleCASPubMed Google Scholar
Zheng, X.X. et al. Favorably tipping the balance between cytopathic and regulatory T cells to create transplantation tolerance. Immunity19, 503–514 (2003). ArticleCASPubMed Google Scholar
Heeger, P.S. et al. Pretransplant frequency of donor-specific, IFN-gamma-producing lymphocytes is a manifestation of immunologic memory and correlates with the risk of posttransplant rejection episodes. J. Immunol.163, 2267–2275 (1999). CASPubMed Google Scholar
Padovan, E. et al. Expression of two T cell receptor alpha chains: dual receptor T cells. Science262, 422–424 (1993). ArticleCASPubMed Google Scholar
Murali-Krishna, K. & Ahmed, R. Cutting edge: naive T cells masquerading as memory cells. J. Immunol.165, 1733–1737 (2000). ArticleCASPubMed Google Scholar
Gudmundsdottir, H. & Turka, L.A. A closer look at homeostatic proliferation of CD4(+) T cells: costimulatory requirements and role in memory formation. J. Immunol.167, 3699–3707 (2001). ArticleCASPubMed Google Scholar
Ge, Q., Hu, H., Eisen, H.N. & Chen, J. Different contributions of thymopoiesis and homeostasis-driven proliferation to the reconstitution of naive and memory T cell compartments. Proc. Natl Acad. Sci. USA99, 2989–2994 (2002). ArticleCASPubMedPubMed Central Google Scholar
Fan, X. et al. Donor-specific B-cell tolerance after ABO-incompatible infant heart transplantation. Nat. Med.10, 1227–1233 (2004). ArticleCASPubMed Google Scholar
Gloor, J.M. et al. Overcoming a positive crossmatch in living-donor kidney transplantation. Am. J. Transplant.3, 1017–1023 (2003). ArticlePubMed Google Scholar
Yang, Y.G. et al. Tolerization of anti-Galalpha1–3Gal natural antibody-forming B cells by induction of mixed chimerism. J. Exp. Med.187, 1335–1342 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ohdan, H., Swenson, K.G., Kitamura, H., Yang, Y.G. & Sykes, M. Tolerization of Gal alpha 1,3Gal-reactive B cells in pre-sensitized alpha 1,3-galactosyltransferase-deficient mice by nonmyeloablative induction of mixed chimerism. Xenotransplantation8, 227–238 (2001). ArticleCASPubMed Google Scholar
Tryphonopoulos, P. et al. The role of donor bone marrow infusions in withdrawal of immunosuppression in adult liver allotransplantation. Am. J. Transplant.5, 608–613 (2005). ArticlePubMed Google Scholar
Oike, F. et al. Complete withdrawal of immunosuppression in living donor liver transplantation. Transplant. Proc.34, 1521 (2002). ArticlePubMed Google Scholar
Cascalho, M. & Platt, J.L. The immunological barrier to xenotransplantation. Immunity14, 437–446 (2001). ArticleCASPubMed Google Scholar
McCurry, K.R. et al. Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury. Nat. Med.1, 423–427 (1995). ArticleCASPubMed Google Scholar
Kolber-Simonds, D. et al. Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations. Proc. Natl Acad. Sci. USA101, 7335–7340 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lai, L. et al. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science295, 1089–1092 (2002). ArticleCASPubMed Google Scholar
Phelps, C.J. et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science299, 411–414 (2003). ArticleCASPubMed Google Scholar
Yamada, K. et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue. Nat. Med.11, 32–34 (2005). ArticleCASPubMed Google Scholar
Kuwaki, K. et al. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat. Med.11, 29–31 (2005). ArticleCASPubMed Google Scholar
Patience, C., Takeuchi, Y. & Weiss, R.A. Infection of human cells by an endogenous retrovirus of pigs. Nat. Med.3, 282–286 (1997). ArticleCASPubMed Google Scholar
Paradis, K. et al. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group. Science285, 1236–1241 (1999). ArticleCASPubMed Google Scholar
Scobie, L. et al. Absence of replication-competent human-tropic porcine endogenous retroviruses in the germ line DNA of inbred miniature Swine. J. Virol.78, 2502–2509 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wobus, A.M. & Boheler, K.R. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol. Rev.85, 635–678 (2005). ArticleCASPubMed Google Scholar
Freed, C.R. et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N. Engl. J. Med.344, 710–719 (2001). ArticleCASPubMed Google Scholar
Sarwal, M. et al. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N. Engl. J. Med.349, 125–138 (2003). ArticleCASPubMed Google Scholar