A post-docking role for active zone protein Rim (original) (raw)
References
Burns, M. & Augustine, G. Synaptic structure and function: dynamic organization yields architectural precision. Cell83, 187–194 (1995). ArticleCASPubMed Google Scholar
Heuser, J. E. & Reese, T. S. in Handbook of Physiology I: The Nervous System (eds. Kandel, E. R.) 261–294 (American Physiological Society, Baltimore, 1973). Google Scholar
Landis, D. M., Hall, A. K., Weinstein, L. A. & Reese, T. S. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron1, 201–209 (1988). ArticleCASPubMed Google Scholar
Garner, C. C., Kindler, S. & Gundelfinger, E. D. Molecular determinants of presynaptic active zones. Curr. Opin. Neurobiol.10, 321–327 (2000). ArticleCASPubMed Google Scholar
Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K. & Südhof, T. C. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature388, 593–598 (1997). ArticleCASPubMed Google Scholar
Ozaki, N. et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat. Cell Biol.2, 805–811 (2000). ArticleCASPubMed Google Scholar
Betz, A. et al. Functional interaction of the active zone proteins munc13-1 and rim1 in synaptic vesicle priming. Neuron30, 183–196 (2001). ArticleCASPubMed Google Scholar
Fischer von Mollard, G. et al. rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc. Natl. Acad. Sci. USA87, 1988–1992 (1990). ArticleCASPubMedPubMed Central Google Scholar
Geppert, M. et al. The role of Rab3A in neurotransmitter release. Nature369, 493–497 (1994). ArticleCASPubMed Google Scholar
Geppert, M. & Südhof, T. C. RAB3 and synaptotagmin: the yin and yang of synaptic membrane fusion. Annu. Rev. Neurosci.21, 75–95 (1998). ArticleCASPubMed Google Scholar
Nonet, M. L. et al. C. elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J. Neurosci.17, 8021–8073 (1997). Article Google Scholar
Christoforidis, S., McBride, H. M., Burgoyne, R. D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature397, 621–625 (1999). ArticleCASPubMed Google Scholar
Dixon, D. & Atwood, H. L. Adenylate cyclase system is essential for long-term facilitation at the crayfish neuromuscular junction. J. Neurosci.9, 4246–4252 (1989). ArticleCASPubMedPubMed Central Google Scholar
Zhong, Y. & Wu, C. F. Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade. Science251, 198–201 (1991). ArticleCASPubMed Google Scholar
Bailey, C. H., Bartsch, D. & Kandel, E. R. Toward a molecular definition of long-term memory storage. Proc. Natl. Acad. Sci. USA93, 13445–13452 (1996). ArticleCASPubMedPubMed Central Google Scholar
Nicoll, R. A. & Malenka, R. C. Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature377, 115–118 (1995). ArticleCASPubMed Google Scholar
Aravamudan, B., Fergestad, T., Davis, W. S., Rodesch, C. K. & Broadie, K. Drosophila UNC-13 is essential for synaptic transmission. Nat. Neurosci.2, 965–971 (1999). ArticleCASPubMed Google Scholar
Augustin, I., Rosenmund, C., Südhof, T. C. & Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature400, 457–461 (1999). ArticleCASPubMed Google Scholar
Richmond, J. E., Davis, W. S. & Jorgensen, E. M. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nat. Neurosci.2, 959–964 (1999). ArticleCASPubMedPubMed Central Google Scholar
Richmond, J. E., Weimer, R. M. & Jorgensen, E. M. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature412, 338–341 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nguyen, M., Alfonso, A., Johnson, C. D. & Rand, J. B. Caenorhabditis elegans mutants resistant to inhibitors of acetylcholinesterase. Genetics140, 527–535 (1995). CASPubMedPubMed Central Google Scholar
Miller, K.G. et al. A genetic selection for Caenorhabditis elegans synaptic transmission mutants. Proc. Natl. Acad. Sci. USA93, 12593–12598 (1996). ArticleCASPubMedPubMed Central Google Scholar
Rand, J. B. & Nonet, M. L. Synaptic transmission. in C. elegans II (eds. Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R.) 611–644 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1997). Google Scholar
Kohn, R. E. et al. Expression of multiple UNC-13 proteins in the Caenorhabditis elegans nervous system. Mol. Biol. Cell11, 3441–3452 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nonet, M. L., Saifee, O., Zhao, H., Rand, J. B. & Wei, L. Synaptic transmission deficits in C. elegans synaptobrevin mutants. J. Neurosci.18, 70–80 (1998). ArticleCASPubMedPubMed Central Google Scholar
Saifee, O., Wei, L. P. & Nonet, M. L. The C. elegans unc-64 gene encodes a syntaxin which interacts genetically with synaptobrevin. Mol. Biol. Cell9, 1235–1252 (1998). ArticleCASPubMedPubMed Central Google Scholar
Iwasaki, K., Staunton, J., Saifee, O., Nonet, M. L. & Thomas, J. aex-3 encodes a novel regulator of presynaptic activity in C. elegans. Neuron18, 613–622 (1997). ArticleCASPubMed Google Scholar
Shirataki, H. et al. Rabphilin-3A, a putative target protein for smg p25A/rab3A p25 small GTP-binding protein related to synaptotagmin. Mol. Cell Biol.13, 2061–2068 (1993). ArticleCASPubMedPubMed Central Google Scholar
Staunton, J., Ganetzky, B. & Nonet, M. L. Rabphilin potentiates SNARE function independently of rab3. J. Neurosci. (in press).
Wang, Y., Sugita, S. & Sudhof, T. C. The RIM/NIM family of neuronal C2 domain proteins. Interactions with Rab3 and a new class of Src homology 3 domain proteins. J. Biol. Chem.275, 20033–20044 (2000). ArticleCASPubMed Google Scholar
Hall, D. H. & Hedgecock, E. M. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell65, 837–847 (1991). ArticleCASPubMed Google Scholar
Nonet, M. L., Grundahl, K., Meyer, B. J. & Rand, J. B. Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell73, 1291–1305 (1993). ArticleCASPubMed Google Scholar
Richmond, J. E. & Jorgensen, E. M. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat. Neurosci.2, 791–797 (1999). ArticleCASPubMedPubMed Central Google Scholar
Klenchin, V. A. & Martin, T. F. Priming in exocytosis: attaining fusion-competence after vesicle docking. Biochimie82, 399–407 (2000). ArticleCASPubMed Google Scholar
Rizo, J. & Südhof, T. C. C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem.273, 15879–15882 (1998). ArticleCASPubMed Google Scholar
Chen, Y. A., Scales, S. J. & Scheller, R. H. Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron30, 161–170 (2001). ArticleCASPubMed Google Scholar
Harris, T. W., Hartwieg, E., Horvitz, H. R. & Jorgensen, E. M. Mutations in synaptojanin disrupt synaptic vesicle recycling. J. Cell Biol.150, 589–600 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nonet, M.L. et al. UNC-11, a C. elegans AP180 homolog, regulates the size and protein composition of synaptic vesicles. Mol. Biol. Cell10, 2343–2360 (1999). ArticleCASPubMedPubMed Central Google Scholar
Jorgensen, E. M. et al. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature378, 196–199 (1995). ArticleCASPubMed Google Scholar
Sulston, J. & Hodgkin, J. in The Nematode Caenorhabditis elegans (ed. Wood, W.B.) 587–606 (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1988). Google Scholar
Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. USA95, 5857–5864 (1998). ArticleCASPubMedPubMed Central Google Scholar