The use of the elevated plus maze as an assay of anxiety-related behavior in rodents (original) (raw)

References

  1. Pellow, S., Chopin, P., File, S.E. & Briley, M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14, 149–167 (1985).
    Article CAS Google Scholar
  2. Montgomery, K.C. The relation between fear induced by novel stimulation and exploratory behavior. J. Comp. Physiol. Psychol. 48, 254–260 (1958).
    Article Google Scholar
  3. Handley, S.L. & Mithani, S. Effects of α-adrenoreceptor agonists and antagonists in a maze-exploration model of 'fear'-motivated behaviour. Naunyn-Schmeideberg's Arch. Pharmacol. 327, 1–5 (1984).
    Article CAS Google Scholar
  4. Barnett, SA. The Rat—A Study in Behavior. (Univ. Chicago Press, Chicago, 1975).
    Google Scholar
  5. Gonzalez, L.E. & File, S.E. A five minute experience in the elevated plus-maze alters the state of the benzodiazepine receptor in the dorsal raphe nucleus. J. Neurosci. 17, 1505–1511 (1997).
    Article CAS Google Scholar
  6. Silveira, M.C., Sandner, G. & Graeff, F.G. Induction of Fos immunoreactivity in the brain by exposure to the elevated plus-maze. Behav. Brain Res. 56, 115–118 (1993).
    Article CAS Google Scholar
  7. Cortese, B.M. & Phan, K.L. The role of glutamate in anxiety and related disorders. CNS Spectr. 10, 820–830 (2005).
    Article Google Scholar
  8. Lister, R.G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 92, 180–185 (1987).
    CAS Google Scholar
  9. Mechiel Korte, S. & De Boer, S.F. A robust animal model of state anxiety: fear-potentiated behaviour in the elevated plus-maze. Eur. J. Pharmacol. 463, 163–175 (2003).
    Article CAS Google Scholar
  10. Overstreet, D.H., Commissaris, R.C., De La Garza, R. 2nd, File, S.E., Knapp, D.J. & Seiden, L.S. Involvement of 5-HT1A receptors in animal tests of anxiety and depression: evidence from genetic models. Stress 6, 101–110 (2003).
    Article CAS Google Scholar
  11. Rodgers, R.J., Lee, C. & Shepherd, J.K. Effects of diazepam on behavioural and antinociceptive responses to the elevated plus-maze in male mice depend upon treatment regimen and prior maze experience. Psychopharmacology (Berl.) 106, 102–110 (1992).
    Article CAS Google Scholar
  12. Silva, R.C. & Brandao, M.L. Acute and chronic effects of gepirone and fluoxetine in rats tested in the elevated plus-maze: an ethological analysis. Pharmacol. Biochem. Behav. 65, 209–216 (2000).
    Article CAS Google Scholar
  13. Belzung, C. & Griebel, G. Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav. Brain Res. 125, 141–149 (2001).
    Article CAS Google Scholar
  14. Carobrez, A.P. & Bertoglio, L.J. Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci. Biobehav. Rev. 29, 1193–1205 (2005).
    Article CAS Google Scholar
  15. Dawson, G.R. & Tricklebank, M.D. Use of the elevated plus maze in the search for novel anxiolytic agents. Trends Pharmacol. Sci. 16, 33–36 (1995).
    Article CAS Google Scholar
  16. File, S.E. Factors controlling measures of anxiety and responses to novelty in the mouse. Behav. Brain Res. 125, 151–157 (2001).
    Article CAS Google Scholar
  17. Hogg, S. A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol. Biochem. Behav. 54, 21–30 (1996).
    Article CAS Google Scholar
  18. Kulkarni, S.K. & Sharma, A.C. Elevated plus-maze: a novel psychobehavioral tool to measure anxiety in rodents. Methods Find. Exp. Clin. Pharmacol. 13, 573–577 (1991).
    CAS Google Scholar
  19. Rodgers, R.J. & Dalvi, A. Anxiety, defence and the elevated plus-maze. Neurosci. Biobehav. Rev. 21, 801–810 (1997).
    Article CAS Google Scholar
  20. Wahlsten, D. et al. Different data from different labs: lessons from studies of gene–environment interaction. J Neurobiol. 54, 283–311 (2003).
    Article Google Scholar
  21. Wall, P.M. & Messier, C. Methodological and conceptual issues in the use of the elevated plus-maze as a psychological measurement instrument of animal anxiety-like behavior. Neurosci. Biobehav. Rev. 25, 275–286 (2001).
    Article CAS Google Scholar
  22. Frye, C.A., Petralia, S.M. & Rhodes, M.E. Estrous cycle and sex differences in performance on anxiety tasks coincide with increases in hippocampal progesterone and 3α,5α-THP. Pharmacol. Biochem. Behav. 67, 587–596 (2000).
    Article CAS Google Scholar
  23. File, S.E., Zangrossi, H. Jr, Sanders, F.L. & Mabbutt, P.S. Raised corticosterone in the rat after exposure to the elevated plus-maze. Psychopharmacology 113, 543–546 (1994).
    Article CAS Google Scholar
  24. Rodgers, R.J., Haller, J., Holmes, A., Halasz, J., Walton, T.J. & Brain, P.F. Corticosterone response to the plus-maze: high correlation with risk assessment in rats and mice. Physiol. Behav. 68, 47–53 (1999).
    Article CAS Google Scholar
  25. File, S.E. & Wardill, A.G. Validity of head-dipping as a measure of exploration in a modified hole-board. Psychopharmacologia 44, 53–59 (1975).
    Article CAS Google Scholar
  26. File, S.E. & Wardill, A.G. The reliability of the hole-board apparatus. Psychopharmacologia 44, 47–51 (1975).
    Article CAS Google Scholar
  27. Weiss, S.M., Wadsworth, G., Fletcher, A. & Dourish, C.T. Utility of ethological analysis to overcome locomotor confounds in elevated maze models of anxiety. Neurosci. Biobehav. Rev. 23, 265–271 (1998).
    Article CAS Google Scholar
  28. Adamec, R., Strasser, K., Blundell, J., Burton, P. & McKay, D.W. Protein synthesis and the mechanisms of lasting change in anxiety induced by severe stress. Behav. Brain Res. 167, 270–286 (2006).
    Article CAS Google Scholar
  29. Adamec, R., Blundell, J. & Burton, P. Anxiolytic effects of kindling role of anatomical location of the kindling electrode in response to kindling of the right basolateral amygdala. Brain Res. 1024, 44–45 (2004).
    Article CAS Google Scholar
  30. File, S.E., Mabbutt, P.S. & Hitchcott, P.K. Characterisation of the phenomenon of “one-trial tolerance” to the anxiolytic effect of chlordiazepoxide in the elevated plus-maze. Psychopharmacology 102, 98–101 (1990).
    Article CAS Google Scholar
  31. Almeida, S.S., Garcia, R.A. & de Oliveira, L.M. Effects of early protein malnutrition and repeated testing upon locomotor and exploratory behaviors in the elevated plus-maze. Physiol. Behav. 54, 749–752 (1993).
    Article CAS Google Scholar
  32. Bertoglio, L.J. & Carobrez, A.P. Previous maze experience required to increase open arms avoidance in rats submitted to the elevated plus-maze model of anxiety. Behav. Brain Res. 108, 197–203 (2000).
    Article CAS Google Scholar
  33. Bertoglio, L.J. & Carobrez, A.P. Anxiolytic effects of ethanol and phenobarbital are abolished in test-experienced rats submitted to the elevated plus maze. Pharmacol. Biochem. Behav. 73, 963–969 (2002).
    Article CAS Google Scholar
  34. Bertoglio, L.J. & Carobrez, A.P. Behavioral profile of rats submitted to session 1–session 2 in the elevated plus-maze during diurnal/nocturnal phases and under different illumination conditions. Behav. Brain Res. 132, 135–143 (2002).
    Article Google Scholar
  35. Fernandes, C. & File, S.E. The influence of open arm ledges and maze experience in the elevated plus-maze. Pharmacol. Biochem. Behav. 54, 31–40 (1996).
    Article CAS Google Scholar
  36. Lee, C. & Rodgers, R.J. Antinociceptive effects of elevated plus-maze exposure: influence of opiate receptor manipulations. Psychopharmacology 102, 507–513 (1990).
    Article CAS Google Scholar
  37. Treit, D., Menard, J. & Royan, C. Anxiogenic stimuli in the elevated plus-maze. Pharmacol. Biochem. Behav. 44, 463–469 (1993).
    Article CAS Google Scholar
  38. Adamec, R. & Shallow, T. Effects of baseline anxiety on response to kindling of the right medial amygdala. Physiol. Behav. 70, 67–80 (2000).
    Article CAS Google Scholar
  39. Adamec, R., Shallow, T. & Burton, P. Anxiolytic and anxiogenic effects of kindling—role of baseline anxiety and anatomical location of the kindling electrode in response to kindling of the right and left basolateral amygdala. Behav. Brain Res. 159, 73–88 (2005).
    Article Google Scholar
  40. Edinger, K.L. & Frye, C.A. Testosterone's anti-anxiety and analgesic effects may be due in part to actions of its 5alpha-reduced metabolites in the hippocampus. Psychoneuroendocrinology 30, 418–430 (2005).
    Article CAS Google Scholar
  41. Frye, C.A. & Lacey, E.H. Posttraining androgens' enhancement of cognitive performance is temporally distinct from androgens' increases in affective behavior. Cogn. Affect. Behav. Neurosci. 1, 172–182 (2001).
    Article CAS Google Scholar
  42. Frye, C.A. & Seliga, A.M. Testosterone increases analgesia, anxiolysis, and cognitive performance of male rats. Cogn. Affect. Behav. Neurosci. 1, 371–381 (2001).
    Article CAS Google Scholar
  43. Frye, C.A. & Rhodes, M.E. Infusions of 5α-pregnan-3α-ol-20-one (3α,5α-THP) to the ventral tegmental area, but not the substantia nigra, enhance exploratory, anti-anxiety, social and sexual behaviours and concomitantly increase 3α,5α-THP concentrations in the hippocampus, diencephalon and cortex of ovariectomised oestrogen-primed rats. J. Neuroendocrinol. 18, 960–975 (2006).
    Article CAS Google Scholar
  44. Frye, C.A., Rhodes, M.E., Petralia, S.M., Walf, A.A., Sumida, K. & Edinger, K.L. 3α-Hydroxy-5α-pregnan-20-one in the midbrain ventral tegmental area mediates social, sexual, and affective behaviors. Neuroscience 138, 1007–1014 (2006).
    Article CAS Google Scholar
  45. Frye, C.A., Walf, A.A., Rhodes, M.E. & Harney, J.P. Progesterone enhances motor, anxiolytic, analgesic, and antidepressive behavior of wild-type mice, but not those deficient in type 1 5 alpha-reductase. Brain Res. 1004, 116–124 (2004).
    Article CAS Google Scholar
  46. Frye, C.A. & Walf, A.A. Estrogen and/or progesterone systemically or to the amygdala can have anxiety, fear, and pain reducing effects in ovx rats. Behav. Neurosci. 118, 306–313 (2004).
    Article CAS Google Scholar
  47. Rhodes, M.E. & Frye, C.A. Inhibiting progesterone metabolism in the hippocampus of rats in behavioral estrus decreases anxiolytic behaviors and enhances exploratory and antinociceptive behaviors. Cogn. Affect. Behav. Neurosci. 1, 287–296 (2001).
    Article CAS Google Scholar
  48. Walf, A.A. & Frye, C.A. Estradiol's effects to reduce anxiety and depressive behavior may be mediated by estradiol dose and restraint stress. Neuropsychopharmacology 30, 1288–1301 (2005).
    Article CAS Google Scholar
  49. Walf, A.A. & Frye, C.A. ERβ-selective estrogen receptor modulators produce antianxiety behavior when administered systemically to ovariectomized rats. Neuropsychopharmacology 30, 1598–1609 (2005).
    Article CAS Google Scholar
  50. Walf, A.A. & Frye, C.A. A review and update of: mechanisms of estrogen in the hippocampus and amygdala for anxiety and depression behavior. Neuropsychopharmacology 31, 1097–1111 (2006).
    Article CAS Google Scholar
  51. Andrade, M.M., Tome, M.F., Santiago, E.S., Lucia-Santos, A. & de Andrade, T.G. Longitudinal study of daily variation of rats' behavior in the elevated plus-maze. Physiol. Behav. 78, 125–133 (2003).
    Article CAS Google Scholar
  52. Jones, N. & King, S.M. Influence of circadian phase and test illumination on pre-clinical models of anxiety. Physiol. Behav. 72, 99–106 (2001).
    Article CAS Google Scholar
  53. Adamec, R.E. & Shallow, T. Lasting effects on rodent anxiety of a single exposure to a cat. Physiol. Behav. 54, 101–109 (1993).
    Article CAS Google Scholar
  54. Andrews, N. & File, S.E. Handling history of rats modifies behavioural effects of drugs in the elevated plus-maze test of anxiety. Eur. J. Pharmacol. 235, 109–112 (1993).
    Article CAS Google Scholar
  55. Brett, R.R. & Pratt, J.A. Chronic handling modifies the anxiolytic effect of diazepam in the elevated plus-maze. Eur. J. Pharmacol. 178, 135–138 (1990).
    Article CAS Google Scholar
  56. File, S.E., Andrews, N., Wu, P.Y., Zharkovsky, A. & Zangrossi, H. Jr . Modification of chlordiazepoxide's behavioural and neurochemical effects by handling and plus-maze experience. Eur. J. Pharmacol. 218, 9–14 (1992).
    Article CAS Google Scholar
  57. Lapin, I.P. Only controls: effect of handling, sham injection, and intraperitoneal injection of saline on behavior of mice in an elevated plus-maze. J. Pharmacol. Toxicol. Methods 34, 73–77 (1995).
    Article CAS Google Scholar
  58. Padovan, C.M. & Guimaraes, F.S. Restraint-induced hypoactivity in an elevated plus-maze. Braz. J. Med. Biol. Res. 33, 79–83 (2000).
    Article CAS Google Scholar
  59. Schmitt, U. & Hiemke, C. Strain differences in open-field and elevated plus-maze behavior of rats without and with pretest handling. Pharmacol. Biochem. Behav. 59, 807–811 (1998).
    Article CAS Google Scholar
  60. Steenbergen, H.L., Heinsbroek, R.P., Van Hest, A. & Van de Poll, N.E. Sex-dependent effects of inescapable shock administration on shuttlebox-escape performance and elevated plus-maze behavior. Physiol. Behav. 48, 571–576 (1990).
    Article CAS Google Scholar
  61. Hendrie, C.A., Eilam, D. & Weiss, S.M. Effects of diazepam and buspirone on the behaviour of wild voles (Microtus socialis) in two models of anxiety. Pharmacol. Biochem. Behav. 58, 573–576 (1997).
    Article CAS Google Scholar
  62. Holmes, A., Parmigiani, S., Ferrari, P.F., Palanza, P. & Rodgers, R.J. Behavioral profile of wild mice in the elevated plus-maze test for anxiety. Physiol. Behav. 71, 509–516 (2000).
    Article CAS Google Scholar
  63. Rex, A., Marsden, C.A. & Fink, H. Effect of diazepam on cortical 5-HT release and behaviour in the guinea-pig on exposure to the elevated plus maze. Psychopharmacology 110, 490–496 (1993).
    Article CAS Google Scholar
  64. Stowe, J.R., Liu, Y., Curtis, J.T., Freeman, M.E. & Wang, Z. Species differences in anxiety-related responses in male prairie and meadow voles: the effects of social isolation. Physiol. Behav. 86, 369–378 (2005).
    Article CAS Google Scholar
  65. Varty, G.B., Morgan, C.A., Cohen-Williams, M.E., Coffin, V.L. & Carey, G.J. The gerbil elevated plus-maze I: behavioral characterization and pharmacological validation. Neuropsychopharmacology 27, 357–370 (2002).
    Article CAS Google Scholar
  66. Carola, V., D'Olimpio, F., Brunamonti, E., Mangia, F. & Renzi, P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res. 134, 49–57 (2002).
    Article Google Scholar
  67. Ramos, A., Berton, O., Mormede, P. & Chaouloff, F. A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behav. Brain Res. 85, 57–69 (1997).
    Article CAS Google Scholar
  68. Rodgers, R.J. & Cole, J.C. Influence of social isolation, gender, strain, and prior novelty on plus-maze behaviour in mice. Physiol. Behav. 54, 729–736 (1993).
    Article CAS Google Scholar
  69. Trullas, R. & Skolnick, P. Differences in fear motivated behaviors among inbred mouse strains. Psychopharmacology 111, 323–331 (1993).
    Article CAS Google Scholar
  70. Voikar, V., Koks, S., Vasar, E. & Rauvala, H. Strain and gender differences in the behavior of mouse lines commonly used in transgenic studies. Physiol. Behav. 72, 271–281 (2001).
    Article CAS Google Scholar
  71. Bert, B., Fink, H., Sohr, R. & Rex, A. Different effects of diazepam in Fischer rats and two stocks of Wistar rats in tests of anxiety. Pharmacol. Biochem. Behav. 70, 411–420 (2001).
    Article CAS Google Scholar
  72. Imhof, J.T., Coelho, Z.M., Schmitt, M.L., Morato, G.S. & Carobrez, A.P. Influence of gender and age on performance of rats in the elevated plus maze apparatus. Behav. Brain Res. 56, 177–180 (1993).
    Article CAS Google Scholar
  73. Johnston, A.L. & File, S.E. Sex differences in animal tests of anxiety. Physiol. Behav. 49, 245–250 (1991).
    Article CAS Google Scholar
  74. Marcondes, F.K., Miguel, K.J., Melo, L.L. & Spadari-Bratfisch,, R.C. Estrous cycle influences the response of female rats in the elevated plus-maze test. Physiol. Behav. 74, 435–440 (2001).
    Article CAS Google Scholar
  75. Mora, S., Dussaubat, N. & Diaz-Veliz, G. Effects of the estrous cycle and ovarian hormones on behavioral indices of anxiety in female rats. Psychoneuroendocrinology 21, 609–620 (1996).
    Article CAS Google Scholar
  76. Boguszewski, P. & Zagrodzka, J. Emotional changes related to age in rats—a behavioral analysis. Behav. Brain Res. 133, 323–332 (2002).
    Article Google Scholar
  77. Nomikos, G.G. & Spyraki, C. Influence of oestrogen on spontaneous and diazepam-induced exploration of rats in an elevated plus maze. Neuropharmacology 27, 691–696 (1988).
    Article CAS Google Scholar
  78. Hunt, C. & Hambly, C. Faecal corticosterone concentrations indicate that separately housed male mice are not more stressed than group housed males. Physiol. Behav. 87, 519–526 (2006).
    Article CAS Google Scholar
  79. Zhu, S.W., Yee, B.K., Nyffeler, M., Winblad, B., Feldon, J. & Mohammed, A.H. Influence of differential housing on emotional behaviour and neurotrophin levels in mice. Behav. Brain Res. 169, 10–20 (2006).
    Article CAS Google Scholar
  80. Treit, D.J., Menard & Royan, C. Anxiogenic stimuli in the elevated plus-maze. Pharmacol. Biochem. Behav. 44, 463–469 (1993).
    Article CAS Google Scholar

Download references