Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging (original) (raw)
References
Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res.64, 7022–7029 (2004). ArticleCAS Google Scholar
Hickman, H.D., Bennink, J.R. & Yewdell, J.W. Caught in the act: intravital multiphoton microscopy of host-pathogen interactions. Cell Host Microbe5, 13–21 (2009). ArticleCAS Google Scholar
Bousso, P., Bhakta, N.R., Lewis, R.S. & Robey, E. Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science296, 1876–1880 (2002). ArticleCAS Google Scholar
Stoll, S., Delon, J., Brotz, T.M. & Germain, R.N. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science296, 1873–1876 (2002). Article Google Scholar
Sahai, E. et al. Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol.5, 14 (2005). Article Google Scholar
Ducros, M. et al. Spectral unmixing: analysis of performance in the olfactory bulb in vivo. PLoS One4, e4418 (2009). Article Google Scholar
Kawano, H., Kogure, T., Abe, Y., Mizuno, H. & Miyawaki, A. Two-photon dual-color imaging using fluorescent proteins. Nat. Methods5, 373–374 (2008). ArticleCAS Google Scholar
Tillo, S.E., Hughes, T.E., Makarov, N.S., Rebane, A. & Drobizhev, M. A new approach to dual-color two-photon microscopy with fluorescent proteins. BMC Biotechnol.10, 6 (2010). Article Google Scholar
Piatkevich, K.D. & Verkhusha, V.V. Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission. Curr. Opin. Chem. Biol.14, 23–29 (2010). ArticleCAS Google Scholar
Drobizhev, M., Tillo, S., Makarov, N.S., Hughes, T.E. & Rebane, A. Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins. J. Phys. Chem. B113, 855–859 (2009). ArticleCAS Google Scholar
Shcherbo, D. et al. Bright far-red fluorescent protein for whole-body imaging. Nat. Methods4, 741–746 (2007). ArticleCAS Google Scholar
Morozova, K.S. et al. Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys. J.99, L13–L15 (2010). ArticleCAS Google Scholar
Andresen, V. et al. Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr. Opin. Biotechnol.20, 54–62 (2009). ArticleCAS Google Scholar
Herz, J. et al. Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator. Biophys. J.98, 715–723 (2010). ArticleCAS Google Scholar
Klauschen, F. et al. Quantifying cellular interaction dynamics in 3D fluorescence microscopy data. Nat. Protoc.4, 1305–1311 (2009). ArticleCAS Google Scholar
Klauschen, F., Qi, H., Egen, J.G., Germain, R.N. & Meier-Schellersheim, M. Computational reconstruction of cell and tissue surfaces for modeling and data analysis. Nat. Protoc.4, 1006–1012 (2009). ArticleCAS Google Scholar
Miller, M.J., Wei, S.H., Parker, I. & Cahalan, M.D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science296, 1869–1873 (2002). ArticleCAS Google Scholar
Fork, R.L., Martinez, O.E. & Gordon, J.P. Negative dispersion using pairs of prisms. Opt. Lett.9, 150–152 (1984). ArticleCAS Google Scholar
Gurskaya, N.G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol.24, 461–465 (2006). ArticleCAS Google Scholar
Kedrin, D. et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat. Methods5, 1019–1021 (2008). ArticleCAS Google Scholar
Dovas, A. et al. Visualisation of actin polymerization in invasive structures of macrophages and carcinoma cells using photoconvertible Beta-actin—Dendra2 fusion proteins. PloS One6, e16485 (2011)doi:10.1371/journal.pone.0016485. ArticleCAS Google Scholar
Wyckoff, J., Gligorijevic, B., Entenberg, D., Segall, J. & Condeelis, J. in Live Cell Imaging: A Laboratory Manual 2nd edn. (eds. Swedlow, J., Goldman, R. & Spector, D.) 409–422 (Cold Spring Harbor Press, 2009).
Gligorijevic, B. & Condeelis, J. Stretching the timescale of intravital imaging in tumors. Cell Adh. Migr.3, 313–315 (2009). Article Google Scholar
Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science248, 73–76 (1990). ArticleCAS Google Scholar
Soeller, C. & Cannell, M.B. Construction of a two-photon microscope and optimisation of illumination pulse duration. Pflugers Arch.432, 555–561 (1996). ArticleCAS Google Scholar
Konig, K., Simon, U. & Halbhuber, K.J. 3D resolved two-photon fluorescence microscopy of living cells using a modified confocal laser scanning microscope. Cell Mol. Biol. (Noisy-le-grand)42, 1181–1194 (1996). CAS Google Scholar
Fan, G.Y. et al. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys. J.76, 2412–2420 (1999). ArticleCAS Google Scholar
Campagnola, P.J., Wei, M.D., Lewis, A. & Loew, L.M. High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys. J.77, 3341–3349 (1999). ArticleCAS Google Scholar
Majewska, A., Yiu, G. & Yuste, R. A custom-made two-photon microscope and deconvolution system. Pflugers. Arch.441, 398–408 (2000). ArticleCAS Google Scholar
Brown, E.B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med.7, 864–868 (2001). ArticleCAS Google Scholar
Diaspro, A. et al. Two-photon microscopy and spectroscopy based on a compact confocal scanning head. J. Biomed. Opt.6, 300–310 (2001). ArticleCAS Google Scholar
Wokosin, D.L., Squirrell, J.M., Eliceiri, K.W. & White, J.G. Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities. Rev. Sci. Instrum.74, 193–201 (2003). ArticleCAS Google Scholar
Roorda, R.D., Hohl, T.M., Toledo-Crow, R. & Miesenbock, G. Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes. J. Neurophysiol.92, 609–621 (2004). Article Google Scholar
Vicidomini, G. et al. Characterization of uniform ultrathin layer for z-response measurements in three-dimensional section fluorescence microscopy. J. Microsc.225, 88–95 (2007). ArticleCAS Google Scholar
He, W., Wang, H., Hartmann, L.C., Cheng, J.X. & Low, P.S. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc. Natl. Acad. Sci. USA104, 11760–11765 (2007). ArticleCAS Google Scholar
Han, X., Burke, R.M., Zettel, M.L., Tang, P. & Brown, E.B. Second harmonic properties of tumor collagen: determining the structural relationship between reactive stroma and healthy stroma. Opt. Express16, 1846–1859 (2008). ArticleCAS Google Scholar
Masters, B.R., So, P.T. & Gratton, E. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J.72, 2405–2412 (1997). ArticleCAS Google Scholar
Tan, Y.P., Llano, I., Hopt, A., Wurriehausen, F. & Neher, E. Fast scanning and efficient photodetection in a simple two-photon microscope. J. Neurosci. Methods92, 123–135 (1999). ArticleCAS Google Scholar
Piston, D.W. & Knobel, S.M. Quantitative imaging of metabolism by two-photon excitation microscopy. Methods Enzymol.307, 351–368 (1999). ArticleCAS Google Scholar
Mainen, Z.F. et al. Two-photon imaging in living brain slices. Methods18, 231–239, 181 (1999). ArticleCAS Google Scholar
Nguyen, Q.T., Callamaras, N., Hsieh, C. & Parker, I. Construction of a two-photon microscope for video-rate Ca(2+) imaging. Cell Calcium30, 383–393 (2001). ArticleCAS Google Scholar
Tsai, P.S. et al. in In Vivo Optical Imaging of Brain Function (ed. Frostig, R.D.) 113–171 (CRC Press, 2002).
Zoumi, A., Yeh, A. & Tromberg, B.J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl. Acad. Sci. USA99, 11014–11019 (2002). ArticleCAS Google Scholar
Supatto, W. et al. In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc. Natl. Acad. Sci. USA102, 1047–1052 (2005). ArticleCAS Google Scholar
Alencar, H., Mahmood, U., Kawano, Y., Hirata, T. & Weissleder, R. Novel multiwavelength microscopic scanner for mouse imaging. Neoplasia7, 977–983 (2005). Article Google Scholar
Zinselmeyer, B.H., Lynch, J.N., Zhang, X., Aoshi, T. & Miller, M.J. Video-rate two-photon imaging of mouse footpad—a promising model for studying leukocyte recruitment dynamics during inflammation. Inflamm. Res.57, 93–96 (2008). ArticleCAS Google Scholar
Zipfel, W.R., Williams, R.M. & Webb, W.W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol.21, 1369–1377 (2003). ArticleCAS Google Scholar
Shcherbo, D. et al. Far-red fluorescent tags for protein imaging in living tissues. Biochem. J.418, 567–574 (2009). ArticleCAS Google Scholar