Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging (original) (raw)

References

  1. Wyckoff, J. et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 64, 7022–7029 (2004).
    Article CAS Google Scholar
  2. Hickman, H.D., Bennink, J.R. & Yewdell, J.W. Caught in the act: intravital multiphoton microscopy of host-pathogen interactions. Cell Host Microbe 5, 13–21 (2009).
    Article CAS Google Scholar
  3. Bousso, P., Bhakta, N.R., Lewis, R.S. & Robey, E. Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296, 1876–1880 (2002).
    Article CAS Google Scholar
  4. Stoll, S., Delon, J., Brotz, T.M. & Germain, R.N. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).
    Article Google Scholar
  5. Sahai, E. et al. Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol. 5, 14 (2005).
    Article Google Scholar
  6. Ducros, M. et al. Spectral unmixing: analysis of performance in the olfactory bulb in vivo. PLoS One 4, e4418 (2009).
    Article Google Scholar
  7. Kawano, H., Kogure, T., Abe, Y., Mizuno, H. & Miyawaki, A. Two-photon dual-color imaging using fluorescent proteins. Nat. Methods 5, 373–374 (2008).
    Article CAS Google Scholar
  8. Tillo, S.E., Hughes, T.E., Makarov, N.S., Rebane, A. & Drobizhev, M. A new approach to dual-color two-photon microscopy with fluorescent proteins. BMC Biotechnol. 10, 6 (2010).
    Article Google Scholar
  9. Piatkevich, K.D. & Verkhusha, V.V. Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission. Curr. Opin. Chem. Biol. 14, 23–29 (2010).
    Article CAS Google Scholar
  10. Drobizhev, M., Tillo, S., Makarov, N.S., Hughes, T.E. & Rebane, A. Absolute two-photon absorption spectra and two-photon brightness of orange and red fluorescent proteins. J. Phys. Chem. B 113, 855–859 (2009).
    Article CAS Google Scholar
  11. Shcherbo, D. et al. Bright far-red fluorescent protein for whole-body imaging. Nat. Methods 4, 741–746 (2007).
    Article CAS Google Scholar
  12. Morozova, K.S. et al. Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys. J. 99, L13–L15 (2010).
    Article CAS Google Scholar
  13. Andresen, V. et al. Infrared multiphoton microscopy: subcellular-resolved deep tissue imaging. Curr. Opin. Biotechnol. 20, 54–62 (2009).
    Article CAS Google Scholar
  14. Herz, J. et al. Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator. Biophys. J. 98, 715–723 (2010).
    Article CAS Google Scholar
  15. Klauschen, F. et al. Quantifying cellular interaction dynamics in 3D fluorescence microscopy data. Nat. Protoc. 4, 1305–1311 (2009).
    Article CAS Google Scholar
  16. Klauschen, F., Qi, H., Egen, J.G., Germain, R.N. & Meier-Schellersheim, M. Computational reconstruction of cell and tissue surfaces for modeling and data analysis. Nat. Protoc. 4, 1006–1012 (2009).
    Article CAS Google Scholar
  17. Miller, M.J., Wei, S.H., Parker, I. & Cahalan, M.D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).
    Article CAS Google Scholar
  18. Fork, R.L., Martinez, O.E. & Gordon, J.P. Negative dispersion using pairs of prisms. Opt. Lett. 9, 150–152 (1984).
    Article CAS Google Scholar
  19. Gurskaya, N.G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24, 461–465 (2006).
    Article CAS Google Scholar
  20. Kedrin, D. et al. Intravital imaging of metastatic behavior through a mammary imaging window. Nat. Methods 5, 1019–1021 (2008).
    Article CAS Google Scholar
  21. Dovas, A. et al. Visualisation of actin polymerization in invasive structures of macrophages and carcinoma cells using photoconvertible Beta-actin—Dendra2 fusion proteins. PloS One 6, e16485 (2011)doi:10.1371/journal.pone.0016485.
    Article CAS Google Scholar
  22. Wyckoff, J., Gligorijevic, B., Entenberg, D., Segall, J. & Condeelis, J. in Live Cell Imaging: A Laboratory Manual 2nd edn. (eds. Swedlow, J., Goldman, R. & Spector, D.) 409–422 (Cold Spring Harbor Press, 2009).
  23. Gligorijevic, B. & Condeelis, J. Stretching the timescale of intravital imaging in tumors. Cell Adh. Migr. 3, 313–315 (2009).
    Article Google Scholar
  24. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).
    Article CAS Google Scholar
  25. Soeller, C. & Cannell, M.B. Construction of a two-photon microscope and optimisation of illumination pulse duration. Pflugers Arch. 432, 555–561 (1996).
    Article CAS Google Scholar
  26. Konig, K., Simon, U. & Halbhuber, K.J. 3D resolved two-photon fluorescence microscopy of living cells using a modified confocal laser scanning microscope. Cell Mol. Biol. (Noisy-le-grand) 42, 1181–1194 (1996).
    CAS Google Scholar
  27. Fan, G.Y. et al. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys. J. 76, 2412–2420 (1999).
    Article CAS Google Scholar
  28. Campagnola, P.J., Wei, M.D., Lewis, A. & Loew, L.M. High-resolution nonlinear optical imaging of live cells by second harmonic generation. Biophys. J. 77, 3341–3349 (1999).
    Article CAS Google Scholar
  29. Majewska, A., Yiu, G. & Yuste, R. A custom-made two-photon microscope and deconvolution system. Pflugers. Arch. 441, 398–408 (2000).
    Article CAS Google Scholar
  30. Brown, E.B. et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med. 7, 864–868 (2001).
    Article CAS Google Scholar
  31. Diaspro, A. et al. Two-photon microscopy and spectroscopy based on a compact confocal scanning head. J. Biomed. Opt. 6, 300–310 (2001).
    Article CAS Google Scholar
  32. Wokosin, D.L., Squirrell, J.M., Eliceiri, K.W. & White, J.G. Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities. Rev. Sci. Instrum. 74, 193–201 (2003).
    Article CAS Google Scholar
  33. Bird, D.K., Eliceiri, K.W., Fan, C.H. & White, J.G. Simultaneous two-photon spectral and lifetime fluorescence microscopy. Appl. Opt. 43, 5173–5182 (2004).
    Article Google Scholar
  34. Roorda, R.D., Hohl, T.M., Toledo-Crow, R. & Miesenbock, G. Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes. J. Neurophysiol. 92, 609–621 (2004).
    Article Google Scholar
  35. Vicidomini, G. et al. Characterization of uniform ultrathin layer for z-response measurements in three-dimensional section fluorescence microscopy. J. Microsc. 225, 88–95 (2007).
    Article CAS Google Scholar
  36. He, W., Wang, H., Hartmann, L.C., Cheng, J.X. & Low, P.S. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc. Natl. Acad. Sci. USA 104, 11760–11765 (2007).
    Article CAS Google Scholar
  37. Han, X., Burke, R.M., Zettel, M.L., Tang, P. & Brown, E.B. Second harmonic properties of tumor collagen: determining the structural relationship between reactive stroma and healthy stroma. Opt. Express 16, 1846–1859 (2008).
    Article CAS Google Scholar
  38. Masters, B.R., So, P.T. & Gratton, E. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J. 72, 2405–2412 (1997).
    Article CAS Google Scholar
  39. Tan, Y.P., Llano, I., Hopt, A., Wurriehausen, F. & Neher, E. Fast scanning and efficient photodetection in a simple two-photon microscope. J. Neurosci. Methods 92, 123–135 (1999).
    Article CAS Google Scholar
  40. Piston, D.W. & Knobel, S.M. Quantitative imaging of metabolism by two-photon excitation microscopy. Methods Enzymol. 307, 351–368 (1999).
    Article CAS Google Scholar
  41. Mainen, Z.F. et al. Two-photon imaging in living brain slices. Methods 18, 231–239, 181 (1999).
    Article CAS Google Scholar
  42. Nguyen, Q.T., Callamaras, N., Hsieh, C. & Parker, I. Construction of a two-photon microscope for video-rate Ca(2+) imaging. Cell Calcium 30, 383–393 (2001).
    Article CAS Google Scholar
  43. Tsai, P.S. et al. in In Vivo Optical Imaging of Brain Function (ed. Frostig, R.D.) 113–171 (CRC Press, 2002).
  44. Zoumi, A., Yeh, A. & Tromberg, B.J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl. Acad. Sci. USA 99, 11014–11019 (2002).
    Article CAS Google Scholar
  45. Supatto, W. et al. In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc. Natl. Acad. Sci. USA 102, 1047–1052 (2005).
    Article CAS Google Scholar
  46. Alencar, H., Mahmood, U., Kawano, Y., Hirata, T. & Weissleder, R. Novel multiwavelength microscopic scanner for mouse imaging. Neoplasia 7, 977–983 (2005).
    Article Google Scholar
  47. Zinselmeyer, B.H., Lynch, J.N., Zhang, X., Aoshi, T. & Miller, M.J. Video-rate two-photon imaging of mouse footpad—a promising model for studying leukocyte recruitment dynamics during inflammation. Inflamm. Res. 57, 93–96 (2008).
    Article CAS Google Scholar
  48. Zipfel, W.R., Williams, R.M. & Webb, W.W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).
    Article CAS Google Scholar
  49. Shcherbo, D. et al. Far-red fluorescent tags for protein imaging in living tissues. Biochem. J. 418, 567–574 (2009).
    Article CAS Google Scholar

Download references