A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs (original) (raw)
Chain, P.S. et al. Genome project standards in a new era of sequencing. Science326, 236–237 (2009). ArticleCASPubMed Google Scholar
International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature431, 931–945 (2004).
Brent, M.R. Steady progress and recent breakthroughs in the accuracy of automated genome annotation. Nat. Rev. Genet.9, 62–73 (2008). ArticleCASPubMed Google Scholar
Pruitt, K.D., Tatusova, T., Brown, G.R. & Maglott, D.R. NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res.40, D130–D135 (2012). ArticleCASPubMed Google Scholar
Zhang, J., Chiodini, R., Badr, A. & Zhang, G. The impact of next-generation sequencing on genomics. J. Genet. Genomics38, 95–109 (2011). ArticlePubMedPubMed Central Google Scholar
Alkan, C., Sajjadian, S. & Eichler, E.E. Limitations of next-generation genome sequence assembly. Nat. Methods8, 61–65 (2011). ArticleCASPubMed Google Scholar
Miller, J.R., Koren, S. & Sutton, G. Assembly algorithms for next-generation sequencing data. Genomics6, 315–327 (2010). ArticleCAS Google Scholar
Treangen, T.J., Sommer, D.D., Angly, F.E., Koren, S. & Pop, M. Next generation sequence assembly with AMOS. Curr. Protoc. Bioinform.33, 11.8.1–11.8.18 (2011). Article Google Scholar
Zerbino, D.R. Using the Velvet de novo assembler for short-read sequencing technologies. Curr. Protoc. Bioinform.31, 11.5.1–11.5.12 (2010). Article Google Scholar
Assefa, S., Keane, T.M., Otto, T.D., Newbold, C. & Berriman, M. ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics25, 1968–1969 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tsai, I.J., Otto, T.D. & Berriman, M. Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps. Genome Biol.11, R41 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Otto, T.D., Sanders, M., Berriman, M. & Newbold, C. Iterative correction of reference nucleotides (iCORN) using second generation sequencing technology. Bioinformatics26, 1704–1707 (2010). ArticleCASPubMedPubMed Central Google Scholar
Downing, T. et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res.21, 2143–2156 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rogers, M.B.H. et al. Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Res.21, 2129–2142 (2011). ArticleCASPubMedPubMed Central Google Scholar
Protasio, A. et al. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl. Trop. Dis.6, e1455 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kikuchi, T. et al. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathog.7, e1002219 (2011). ArticleCASPubMedPubMed Central Google Scholar
Olson, P.D., Zarowiecki, M., Kiss, F. & Brehm, K. Cestode genomics—progress and prospects for advancing basic and applied aspects of flatworm biology. Parasite Immunol.34, 130–150 (2011). ArticleCAS Google Scholar
Heilbronner, S. et al. Genome sequence of Staphylococcus lugdunensis N920143 allows identification of putative colonization and virulence factors. FEMS Microbiol. Lett.322, 60–67 (2011). ArticleCASPubMed Google Scholar
Omer, H. et al. Genotypic and phenotypic modifications of Neisseria meningitidis after an accidental human passage. PLoS One6, e17145 (2011). ArticleCASPubMedPubMed Central Google Scholar
Petty, N.K. et al. Citrobacter rodentium is an unstable pathogen showing evidence of significant genomic flux. PLoS Pathog.7, e1002018 (2011). ArticleCASPubMedPubMed Central Google Scholar
Stabler, R.A. et al. Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol.10, R102 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Carver, T.B. et al. Artemis and ACT viewing, annotation and comparing sequences stored in relational database. Bioinformatics24, 2672–2676 (2008). ArticleCASPubMedPubMed Central Google Scholar
Koressaar, T. & Remm, M. Enhancements and modifications for primer design program Primer3. Bioinformatics23, 1289–1291 (2007). ArticleCASPubMed Google Scholar
Galardini, M., Biondi, G., Bazzicalupo, M. & Mengoni, A. CONTIGuator: a bacterial genomes finishing tool for structural insights on draft genomes. Source Code Biol. Med.6, 11 (2011). ArticlePubMedPubMed Central Google Scholar
van Hijum, S., Zomer, A., Kuipers, O. & Kok, J. Projector 2: contig mapping for efficient gap-closure of prokaryotic genome sequence assemblies. Nucleic Acid Res.33, W560–W566 (2005). ArticleCASPubMedPubMed Central Google Scholar
Richter, D., Schuster, S. & Huson, D. OSLay: optimal syntenic layout of unfinished assemblies. Bioinformatics23, 1573–1579 (2007). ArticleCASPubMed Google Scholar
Husemann, P. & Stoye, J. r2cat: synteny plots and comparative assembly. Bioinformatics26, 570–571 (2010). ArticleCASPubMed Google Scholar
Li, R. et al. The sequence and de novo assembly of the giant panda genome. Nature463, 311–317 (2010). ArticleCASPubMed Google Scholar
Yao, G. et al. Graph accordance of next-generation sequence assemblies. Bioinformatics28, 13–16 (2012). ArticleCASPubMed Google Scholar
Zimin, A.V., Smith, D.R., Sutton, G. & Yorke, J.A. Assembly reconciliation. Bioinformatics24, 42–45 (2008). ArticleCASPubMed Google Scholar
Yang, X., Medvin, D., Narasimham, G., Yoder-Himes, D. & Lory, S. CloG: a pipeline for closing gaps in a draft assembly using short reads. in 2011 IEEE 1st International Conference on Computational Advances in Bio and Medical Sciences (Orlando, Florida) 202–207 (IEEE, 2011).
Dayarian, A., Michael, T. & Sengupta, A. SOPRA: scaffolding algorithm for paired reads via statistical optimization. BMC Bioinformatics11, 345 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Boetzer, M., Henkel, C., Jansen, H., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics27, 578–579 (2011). ArticleCASPubMed Google Scholar
Gao, S., Nagarajan, H. & Sung, W. Opera: reconstructing optimal genomic scaffolds using pair-end sequences. Res. Comput. Mol. Biol.6577, 437–451 (2011). ArticleCAS Google Scholar
Dutilh, B.H., Huynen, M.A. & Strous, M. Increasing the coverage of a metapopulation consensus genome by iterative read mapping assembly. Bioinformatics25, 2878–2881 (2009). ArticleCASPubMedPubMed Central Google Scholar
Davila, S.M. et al. GARSA: genomic analysis resources for sequence annotation. Bioinformatics21, 4302–4303 (2005). ArticleCASPubMed Google Scholar
Almeida, L. et al. A system for automated bacterial (genome) integrated annotation—SABIA. Bioinformatics20, 2832–2833 (2004). ArticleCASPubMed Google Scholar
Markowitz, V.M. et al. The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res.38, D382–D390 (2010). ArticleCASPubMed Google Scholar
Stanke, M. & Morgenstern, B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res.22, W465–W467 (2005). ArticleCAS Google Scholar
Thomson, N.R.H. et al. Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res.18, 161–171 (2008). ArticleCASPubMedPubMed Central Google Scholar