Campbell, K. S. & Purdy, A. K. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology132, 315–325 (2011). ArticleCASPubMedPubMed Central Google Scholar
Schenkel, A. R., Kingry, L. C. & Slayden, R. A. The Ly49 gene family. A brief guide to the nomenclature, genetics, and role in intracellular infection. Front. Immunol.4, 90 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lazetic, S., Chang, C., Houchins, J. P., Lanier, L. L. & Phillips, J. H. Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits. J. Immunol.157, 4741–4745 (1996). CASPubMed Google Scholar
Wada, H., Matsumoto, N., Maenaka, K., Suzuki, K. & Yamamoto, K. The inhibitory NK cell receptor CD94/NKG2A and the activating receptor CD94/NKG2C bind the top of HLA-E through mostly shared but partly distinct sets of HLA-E residues. Eur. J. Immunol.34, 81–90 (2004). ArticleCASPubMed Google Scholar
Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature391, 795–799 (1998). ArticleCASPubMed Google Scholar
Lee, N. et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc. Natl Acad. Sci. USA95, 5199–5204 (1998). ArticleCASPubMedPubMed Central Google Scholar
Vance, R. E., Kraft, J. R., Altman, J. D., Jensen, P. E. & Raulet, D. H. Mouse CD94/NKG2A Is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) Class I molecule Qa-1b. J. Exp. Med.188, 1841–1848 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lopez-Vergès, S. et al. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc. Natl Acad. Sci. USA108, 14725–14732 (2011). ArticlePubMedPubMed Central Google Scholar
Tripathy, S. K., Smith, H. R. C., Holroyd, E. A., Pingel, J. T. & Yokoyama, W. M. Expression of m157, a murine cytomegalovirus-encoded putative major histocompatibility class I (MHC-I)-like protein, is independent of viral regulation of host MHC-I. J. Virol.80, 545–550 (2006). ArticleCASPubMedPubMed Central Google Scholar
Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science285, 727–729 (1999). ArticleCASPubMed Google Scholar
Raulet, D. H., Gasser, S., Gowen, B. G., Deng, W. & Jung, H. Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol.31, 413–441 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kruse, P. H., Matta, J., Ugolini, S. & Vivier, E. Natural cytotoxicity receptors and their ligands. Immunol. Cell Biol.92, 221–229 (2014). ArticleCASPubMed Google Scholar
Pende, D. et al. Identification and molecular characterization of Nkp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J. Exp. Med.190, 1505–1516 (1999). ArticleCASPubMedPubMed Central Google Scholar
Pessino, A. et al. Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J. Exp. Med.188, 953–960 (1998). ArticleCASPubMedPubMed Central Google Scholar
Cantoni, C. et al. NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel member of the immunoglobulin superfamily. J. Exp. Med.189, 787–796 (1999). ArticleCASPubMedPubMed Central Google Scholar
Walzer, T. et al. Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc. Natl Acad. Sci. USA104, 3384–3389 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hollyoake, M., Campbell, R. D. & Aguado, B. NKp30 (NCR3) is a pseudogene in 12 inbred and wild mouse strains, but an expressed gene in Mus caroli. Mol. Biol. Evol.22, 1661–1672 (2005). ArticleCASPubMed Google Scholar
Martinet, L. & Smyth, M. J. Balancing natural killer cell activation through paired receptors. Nat. Rev. Immunol.15, 243–254 (2015). ArticleCASPubMed Google Scholar
Lakshmikanth, T. et al. NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J. Clin. Invest.119, 1251–1263 (2009). ArticleCASPubMedPubMed Central Google Scholar
Iguchi-Manaka, A. et al. Accelerated tumor growth in mice deficient in DNAM-1 receptor. J. Exp. Med.205, 2959–2964 (2008). This article provides evidence that the DNAM1 receptor has an important role in immune surveillance of tumour development. ArticleCASPubMedPubMed Central Google Scholar
Gilfillan, S. et al. DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J. Exp. Med.205, 2965–2973 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chan, C. J. et al. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat. Immunol.15, 431–438 (2014). ArticleCASPubMed Google Scholar
Johnston, R. J. et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell26, 923–937 (2014). References 28 and 29 demonstrate the role of DNAM1, CD96 and TIGIT in the regulation of NK cell and T cell responses against tumours. ArticleCASPubMed Google Scholar
Bruhns, P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood119, 5640–5649 (2012). ArticleCASPubMed Google Scholar
Battella, S., Cox, M. C., Santoni, A. & Palmieri, G. Natural killer (NK) cells and anti-tumor therapeutic mAb: unexplored interactions. J. Leukoc. Biol., http://dx.doi.org/10.1189/jlb.5VMR0415-141R (2015).
Voskoboinik, I., Whisstock, J. C. & Trapani, J. A. Perforin and granzymes: function, dysfunction and human pathology. Nat. Rev. Immunol.15, 388–400 (2015). ArticleCASPubMed Google Scholar
Krzewski, K. & Coligan, J. E. Human NK cell lytic granules and regulation of their exocytosis. NK Cell Biol.3, 335 (2012). Google Scholar
Wallin, R. P. A., Screpanti, V., Michaëlsson, J., Grandien, A. & Ljunggren, H.-G. Regulation of perforin-independent NK cell-mediated cytotoxicity. Eur. J. Immunol.33, 2727–2735 (2003). ArticleCASPubMed Google Scholar
Cretney, E. et al. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J. Immunol.168, 1356–1361 (2002). ArticleCASPubMed Google Scholar
Cooper, M. A. et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood97, 3146–3151 (2001). ArticleCASPubMed Google Scholar
Maghazachi, A. A. in The Chemokine System in Experimental and Clinical Hematology (ed. Bruserud, O.) 37–58 (Springer, 2010). Book Google Scholar
O'Sullivan, T. et al. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J. Exp. Med.209, 1869–1882 (2012). ArticleCASPubMedPubMed Central Google Scholar
Roder, J. C. et al. A new immunodeficiency disorder in humans involving NK cells. Nature284, 553–555 (1980). ArticleCASPubMed Google Scholar
Sullivan, J. L., Byron, K. S., Brewster, F. E. & Purtilo, D. T. Deficient natural killer cell activity in x-linked lymphoproliferative syndrome. Science210, 543–545 (1980). ArticleCASPubMed Google Scholar
Talmadge, J. E., Meyers, K. M., Prieur, D. J. & Starkey, J. R. Role of natural killer cells in tumor growth and metastasis: C57BL/6 normal and beige mice. J. Natl Cancer Inst.65, 929–935 (1980). CASPubMed Google Scholar
Gorelik, E., Wiltrout, R. H., Okumura, K., Habu, S. & Herberman, R. B. Role of NK cells in the control of metastatic spread and growth of tumor cells in mice. Int. J. Cancer30, 107–112 (1982). ArticleCASPubMed Google Scholar
Nakajima, T., Mizushima, N., Nakamura, J. & Kanai, K. Surface markers of NK cells in peripheral blood of patients with cirrhosis and hepatocellular carcinoma. Immunol. Lett.13, 7–10 (1986). ArticleCASPubMed Google Scholar
Pross, H. F. & Lotzová, E. Role of natural killer cells in cancer. Nat. Immunol.12, 279–292 (1993). CAS Google Scholar
Schantz, S. P., Shillitoe, E. J., Brown, B. & Campbell, B. Natural killer cell activity and head and neck cancer: a clinical assessment. J. Natl Cancer Inst.77, 869–875 (1986). CASPubMed Google Scholar
Strayer, D. R., Carter, W. A. & Brodsky, I. Familial occurrence of breast cancer is associated with reduced natural killer cytotoxicity. Breast Cancer Res. Treat.7, 187–192 (1986). ArticleCASPubMed Google Scholar
Hersey, P., Edwards, A., Honeyman, M. & McCarthy, W. H. Low natural-killer-cell activity in familial melanoma patients and their relatives. Br. J. Cancer40, 113–122 (1979). ArticleCASPubMedPubMed Central Google Scholar
Imai, K., Matsuyama, S., Miyake, S., Suga, K. & Nakachi, K. Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. Lancet356, 1795–1799 (2000). This is a clinical study correlating susceptibility to cancer and NK cell function. ArticleCASPubMed Google Scholar
Spinner, M. A. et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics and immunity. Blood123, 809–821 (2013). ArticleCASPubMed Google Scholar
Gineau, L. et al. Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. J. Clin. Invest.122, 821–832 (2012). ArticleCASPubMedPubMed Central Google Scholar
Smyth, M. J., Hayakawa, Y., Takeda, K. & Yagita, H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat. Rev. Cancer2, 850–861 (2002). ArticleCASPubMed Google Scholar
Hudspeth, K., Silva-Santos, B. & Mavilio, D. Natural cytotoxicity receptors: broader expression patterns and functions in innate and adaptive immune cells. NK Cell Biol.4, 69 (2013). Google Scholar
Robinette, M. L. et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat. Immunol.16, 306–317 (2015). ArticleCASPubMedPubMed Central Google Scholar
Albertsson, P. A. et al. NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity. Trends Immunol.24, 603–609 (2003). ArticleCASPubMed Google Scholar
Bix, M. et al. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature349, 329–331 (1991). ArticleCASPubMed Google Scholar
Cerwenka, A., Baron, J. L. & Lanier, L. L. Ectopic expression of retinoic acid early inducible-1 gene (_RAE_-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl Acad. Sci. USA98, 11521–11526 (2001). ArticleCASPubMedPubMed Central Google Scholar
Diefenbach, A., Jensen, E. R., Jamieson, A. M. & Raulet, D. H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature413, 165–171 (2001). ArticleCASPubMedPubMed Central Google Scholar
Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity28, 571–580 (2008). This article provides evidence for the role of NKG2D in tumour immunosurveillance in mouse tumour models. ArticleCASPubMedPubMed Central Google Scholar
Hayakawa, Y. et al. Cutting edge: tumor rejection mediated by NKG2D receptor–ligand interaction is dependent upon perforin. J. Immunol.169, 5377–5381 (2002). ArticleCASPubMed Google Scholar
Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature419, 734–738 (2002). ArticleCASPubMed Google Scholar
Kaiser, B. K. et al. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature447, 482–486 (2007). ArticleCASPubMed Google Scholar
Salih, H. R., Rammensee, H.-G. & Steinle, A. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J. Immunol.169, 4098–4102 (2002). ArticleCASPubMed Google Scholar
Wu, J. D. et al. Prevalent expression of the immunostimulatory MHC class I chain–related molecule is counteracted by shedding in prostate cancer. J. Clin. Invest.114, 560–568 (2004). References 63–66 describe mechanisms by which tumours shed NKG2DLs to avoid NK cell and T cell recognition. ArticleCASPubMedPubMed Central Google Scholar
Fernández-Messina, L. et al. Differential mechanisms of shedding of the glycosylphosphatidylinositol (GPI)-anchored NKG2D ligands. J. Biol. Chem.285, 8543–8551 (2010). ArticleCASPubMedPubMed Central Google Scholar
Salih, H. R., Goehlsdorf, D. & Steinle, A. Release of MICB molecules by tumor cells: mechanism and soluble MICB in sera of cancer patients. Hum. Immunol.67, 188–195 (2006). ArticleCASPubMed Google Scholar
Salih, H. R., Holdenrieder, S. & Steinle, A. Soluble NKG2D ligands: prevalence, release, and functional impact. Front. Biosci.13, 3448–3456 (2008). ArticleCASPubMed Google Scholar
Holdenrieder, S. et al. Soluble MICA in malignant diseases. Int. J. Cancer118, 684–687 (2006). ArticleCASPubMed Google Scholar
Crane, C. A. et al. Immune evasion mediated by tumor-derived lactate dehydrogenase induction of NKG2D ligands on myeloid cells in glioblastoma patients. Proc. Natl Acad. Sci. USA111, 12823–12828 (2014). This article shows that the secretion of lactate dehydrogenase by human glioblastomas induces NKG2D ligands on monocytes, which may serve as decoys to evade antitumour immune responses. ArticleCASPubMedPubMed Central Google Scholar
Oppenheim, D. E. et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat. Immunol.6, 928–937 (2005). ArticleCASPubMed Google Scholar
Placke, T., Salih, H. R. & Kopp, H.-G. GITR ligand provided by thrombopoietic cells inhibits NK cell antitumor activity. J. Immunol.189, 154–160 (2012). ArticleCASPubMed Google Scholar
Placke, T., Kopp, H.-G. & Salih, H. R. Modulation of natural killer cell anti-tumor reactivity by platelets. J. Innate Immun.3, 374–382 (2011). ArticleCASPubMed Google Scholar
Wilson, E. B. et al. Human tumour immune evasion via TGF-β blocks NK cell activation but not survival allowing therapeutic restoration of anti-tumour activity. PLoS ONE6, e22842 (2011). ArticleCASPubMedPubMed Central Google Scholar
Holt, D., Ma, X., Kundu, N. & Fulton, A. Prostaglandin E2 (PGE2) suppresses natural killer cell function primarily through the PGE2 receptor EP4. Cancer Immunol. Immunother.60, 1577–1586 (2011). ArticleCASPubMedPubMed Central Google Scholar
Pietra, G. et al. Melanoma cells inhibit natural killer cell function by modulating the expression of activating receptors and cytolytic activity. Cancer Res.72, 1407–1415 (2012). ArticleCASPubMed Google Scholar
Hoskin, D., Mader, J., Furlong, S., Conrad, D. & Blay, J. Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (Review). Int. J. Oncol.32, 527–535 (2008). CASPubMed Google Scholar
Mocellin, S., Marincola, F. M. & Young, H. A. Interleukin-10 and the immune response against cancer: a counterpoint. J. Leukoc. Biol.78, 1043–1051 (2005). ArticleCASPubMed Google Scholar
Moretta, A. et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol.19, 197–223 (2001). ArticleCASPubMed Google Scholar
Byrd, A., Hoffmann, S. C., Jarahian, M., Momburg, F. & Watzl, C. Expression analysis of the ligands for the natural killer cell receptors NKp30 and NKp44. PLoS ONE2, e1339 (2007). ArticleCASPubMedPubMed Central Google Scholar
Cagnano, E. et al. Expression of ligands to NKp46 in benign and malignant melanocytes. J. Invest. Dermatol.128, 972–979 (2007). ArticleCASPubMed Google Scholar
Brandt, C. S. et al. The B7 family member B7-H6 is a tumor cell ligand for the activating natural killer cell receptor NKp30 in humans. J. Exp. Med.206, 1495–1503 (2009). ArticleCASPubMedPubMed Central Google Scholar
Li, Y., Wang, Q. & Mariuzza, R. A. Structure of the human activating natural cytotoxicity receptor NKp30 bound to its tumor cell ligand B7-H6. J. Exp. Med.208, 703–714 (2011). ArticleCASPubMedPubMed Central Google Scholar
Matta, J. et al. Induction of B7-H6, a ligand for the natural killer cell–activating receptor NKp30, in inflammatory conditions. Blood122, 394–404 (2013). ArticleCASPubMed Google Scholar
Halfteck, G. G. et al. Enhanced in vivo growth of lymphoma tumors in the absence of the NK-activating receptor NKp46/NCR1. J. Immunol.182, 2221–2230 (2009). ArticleCASPubMed Google Scholar
Glasner, A. et al. Recognition and prevention of tumor metastasis by the NK receptor NKp46/NCR1. J. Immunol.188, 2509–2515 (2012). ArticleCASPubMed Google Scholar
Alvarez-Breckenridge, C. A. et al. NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors. Nat. Med.18, 1827–1834 (2012). ArticleCASPubMedPubMed Central Google Scholar
Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science331, 1565–1570 (2011). ArticleCASPubMed Google Scholar
Alvarez, I. B. et al. Role played by the programmed death-1-programmed death ligand pathway during innate immunity against Mycobacterium tuberculosis. J. Infect. Dis.202, 524–532 (2010). ArticleCASPubMed Google Scholar
Norris, S. et al. PD-1 expression on natural killer cells and CD8+ T cells during chronic HIV-1 infection. Viral Immunol.25, 329–332 (2012). ArticleCASPubMed Google Scholar
Stojanovic, A., Fiegler, N., Brunner-Weinzierl, M. & Cerwenka, A. CTLA-4 is expressed by activated mouse NK cells and inhibits NK cell IFN-γ production in response to mature dendritic cells. J. Immunol.192, 4184–4191 (2014). ArticleCASPubMed Google Scholar
Benson, D. M. et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti–PD-1 antibody. Blood116, 2286–2294 (2010). This is a report of the expression of PD1 on NK cells and augmentation of NK cell activity against multiple myeloma by blockade of PD1. ArticleCASPubMedPubMed Central Google Scholar
Boyerinas, B. et al. Antibody dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody, avelumab (MSB0010718C), on human tumor cells. Cancer Immunol. Res.3, 1148–1157 (2015). ArticleCASPubMedPubMed Central Google Scholar
Lang, S., Vujanovic, N. L., Wollenberg, B. & Whiteside, T. L. Absence of B7.1-CD28/CTLA-4-mediated co-stimulation in human NK cells. Eur. J. Immunol.28, 780–786 (1998). ArticleCASPubMed Google Scholar
Chambers, B. J., Salcedo, M. & Ljunggren, H.-G. Triggering of natural killer cells by the costimulatory molecule CD80 (B7-1). Immunity5, 311–317 (1996). ArticleCASPubMed Google Scholar
Contardi, E. et al. CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. Int. J. Cancer117, 538–550 (2005). ArticleCASPubMed Google Scholar
Laurent, S. et al. The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-α production. J. Transl Med.11, 108 (2013). ArticleCASPubMedPubMed Central Google Scholar
Jarahian, M. et al. Activation of natural killer cells by Newcastle disease virus hemagglutinin-neuraminidase. J. Virol.83, 8108–8121 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bhat, R., Dempe, S., Dinsart, C. & Rommelaere, J. Enhancement of NK cell antitumor responses using an oncolytic parvovirus. Int. J. Cancer128, 908–919 (2011). ArticleCASPubMed Google Scholar
Zamarin, D. et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci. Transl Med.6, 226ra32 (2014). ArticleCASPubMedPubMed Central Google Scholar
Romagné, F. et al. Preclinical characterization of 1-7F9, a novel human anti–KIR receptor therapeutic antibody that augments natural killer–mediated killing of tumor cells. Blood114, 2667–2677 (2009). ArticleCASPubMedPubMed Central Google Scholar
Vahlne, G. et al. In vivo tumor cell rejection induced by NK cell inhibitory receptor blockade: maintained tolerance to normal cells even in the presence of IL-2. Eur. J. Immunol.40, 813–823 (2010). ArticleCASPubMed Google Scholar
Kohrt, H. E. et al. Anti-KIR antibody enhancement of anti-lymphoma activity of natural killer cells as monotherapy and in combination with anti-CD20 antibodies. Blood123, 678–686 (2014). This article reports that KIR blockade enhances the ADCC activity of NK cells in preclinical models. ArticleCASPubMedPubMed Central Google Scholar
Vey, N. et al. A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission. Blood120, 4317–4323 (2012). ArticleCASPubMed Google Scholar
Benson, D. M. et al. A Phase I trial of the anti-KIR antibody IPH2101 and lenalidomide in patients with relapsed/refractory multiple myeloma. Clin. Cancer Res.21, 4055–4061 (2015). ArticleCASPubMedPubMed Central Google Scholar
Benson, D. M. et al. A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood120, 4324–4333 (2012). References 113–115 report Phase I and II trials with KIR blockade in cancer patients. ArticleCASPubMedPubMed Central Google Scholar
Seymour, L., Tinker, A., Hirte, H., Wagtmann, N. & Dodion, P. Abstract O3.2. Phase I and dose ranging, phase II studies with IPH2201, a humanized monoclonal antibody targeting HLA-E receptor CD94/NKG2A. Ann. Oncol.26(Suppl 2), ii3–ii3 (2015). Article Google Scholar
Ndhlovu, L. C. et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood119, 3734–3743 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sun, H., Sun, C. & Xiao, W. Expression regulation of co-inhibitory molecules on human natural killer cells in response to cytokine stimulations. Cytokine65, 33–41 (2014). ArticleCASPubMed Google Scholar
Jing, W. et al. Combined immune checkpoint protein blockade and low dose whole body irradiation as immunotherapy for myeloma. J. Immunother. Cancer3, 2 (2015). ArticlePubMedPubMed Central Google Scholar
Ngiow, S. F., Teng, M. W. L. & Smyth, M. J. Prospects for TIM3-targeted antitumor immunotherapy. Cancer Res.71, 6567–6571 (2011). ArticleCASPubMed Google Scholar
Woo, S.-R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res.72, 917–927 (2012). ArticleCASPubMed Google Scholar
Baessler, T. et al. CD137 ligand mediates opposite effects in human and mouse NK cells and impairs NK-cell reactivity against human acute myeloid leukemia cells. Blood115, 3058–3069 (2010). ArticleCASPubMed Google Scholar
Kohrt, H. E. et al. Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer. J. Clin. Invest.122, 1066–1075 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kohrt, H. E. et al. CD137 stimulation enhances the antilymphoma activity of anti-CD20 antibodies. Blood117, 2423–2432 (2011). References 124 and 125 demonstrate that agonist CD137 antibodies enhance NK cell-mediated ADCC in preclinical models. ArticleCASPubMedPubMed Central Google Scholar
Ascierto, P. A., Simeone, E., Sznol, M., Fu, Y.-X. & Melero, I. Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin. Oncol.37, 508–516 (2010). ArticleCASPubMed Google Scholar
Melero, I., Hirschhorn-Cymerman, D., Morales-Kastresana, A., Sanmamed, M. F. & Wolchok, J. D. Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clin. Cancer Res.19, 1044–1053 (2013). ArticleCASPubMedPubMed Central Google Scholar
Rosenberg, S. A. et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med.313, 1485–1492 (1985). ArticleCASPubMed Google Scholar
Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science295, 2097–2100 (2002). This article supplies the first evidence that KIR-mismatched NK cells decrease leukaemia relapse in human patients receiving haematopoietic stem cell transplants. ArticleCASPubMed Google Scholar
Miller, J. S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood105, 3051–3057 (2005). This article reports on the adoptive transfer of allogeneic NK cells in patients with leukaemia. ArticleCASPubMed Google Scholar
Ishikawa, E. et al. Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res.24, 1861–1871 (2004). PubMed Google Scholar
Shah, N. N. et al. Acute GVHD in patients receiving IL-15/4-1BBL activated NK cells following T-cell–depleted stem cell transplantation. Blood125, 784–792 (2015). ArticleCASPubMedPubMed Central Google Scholar
Ni, J., Miller, M., Stojanovic, A. & Cerwenka, A. Toward the next generation of NK cell-based adoptive cancer immunotherapy. Oncoimmunology2 (2013).
Ni, J., Miller, M., Stojanovic, A., Garbi, N. & Cerwenka, A. Sustained effector function of IL-12/15/18–preactivated NK cells against established tumors. J. Exp. Med.209, 2351–2365 (2012). This article reports that adoptive transfer of cytokine-activated mouse NK cells shows efficacy against tumoursin vivo. ArticleCASPubMedPubMed Central Google Scholar
Floros, T. & Tarhini, A. A. Anticancer cytokines: biology and clinical effects of interferon-α2, interleukin (IL)-2, IL-15, IL-21, and IL-12. Semin. Oncol.42, 539–548 (2015). ArticleCASPubMedPubMed Central Google Scholar
Glienke, W. et al. Advantages and applications of CAR-expressing natural killer cells. Exp. Pharmacol. Drug Discov.6, 21 (2015). Google Scholar
Hermanson, D. L. & Kaufman, D. S. Utilizing chimeric antigen receptors to direct natural killer cell activity. Front. Immunol.6, 195 (2015). ArticleCASPubMedPubMed Central Google Scholar
Boissel, L., Betancur, M., Wels, W. S., Tuncer, H. & Klingemann, H. Transfection with mRNA for CD19 specific chimeric antigen receptor restores NK cell mediated killing of CLL cells. Leuk. Res.33, 1255–1259 (2009). ArticleCASPubMedPubMed Central Google Scholar
Müller, T. et al. Expression of a CD20-specific chimeric antigen receptor enhances cytotoxic activity of NK cells and overcomes NK-resistance of lymphoma and leukemia cells. Cancer Immunol. Immunother.57, 411–423 (2007). ArticleCASPubMed Google Scholar
Esser, R. et al. NK cells engineered to express a GD2-specific antigen receptor display built-in ADCC-like activity against tumour cells of neuroectodermal origin. J. Cell. Mol. Med.16, 569–581 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ahmed, M. & Cheung, N.-K. V. Engineering anti-GD2 monoclonal antibodies for cancer immunotherapy. FEBS Lett.588, 288–297 (2014). ArticleCASPubMed Google Scholar
Uherek, C. et al. Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood100, 1265–1273 (2002). CASPubMed Google Scholar
Liu, H. et al. Specific growth inhibition of ErbB2-expressing human breast cancer cells by genetically modified NK92 cells. Oncol. Rep.33, 95–102 (2015). CASPubMed Google Scholar
Schönfeld, K. et al. Selective inhibition of tumor growth by clonal NK cells expressing an ErbB2/HER2-specific chimeric antigen receptor. Mol. Ther.23, 330–338 (2015). ArticleCASPubMed Google Scholar
Sahm, C., Schönfeld, K. & Wels, W. S. Expression of IL-15 in NK cells results in rapid enrichment and selective cytotoxicity of gene-modified effectors that carry a tumor-specific antigen receptor. Cancer Immunol. Immunother.61, 1451–1461 (2012). ArticleCASPubMed Google Scholar
Zhang, G. et al. Retargeting NK-92 for anti-melanoma activity by a TCR-like single-domain antibody. Immunol. Cell Biol.91, 615–624 (2013). ArticleCASPubMed Google Scholar
Töpfer, K. et al. DAP12-based activating chimeric antigen receptor for NK cell tumor immunotherapy. J. Immunol.194, 3201–3212 (2015). ArticleCASPubMed Google Scholar
Jiang, H. et al. Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol. Oncol.8, 297–310 (2014). ArticleCASPubMed Google Scholar
Knorr, D. A. & Kaufman, D. S. Pluripotent stem cell-derived natural killer cells for cancer therapy. Transl. Res. J. Lab. Clin. Med.156, 147–154 (2010). ArticleCAS Google Scholar
Eguizabal, C. et al. Natural killer cells for cancer immunotherapy: pluripotent stem cells-derived NK cells as an immunotherapeutic perspective. NK Cell Biol.5, 439 (2014). Google Scholar
Chu, J. et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma. Leukemia28, 917–927 (2014). ArticleCASPubMed Google Scholar
Ni, Z. et al. Functional chimeric antigen receptor-expressing natural killer cells derived from human pluripotent stem cells. Blood122, 896–896 (2013). Google Scholar
Imai, C., Iwamoto, S. & Campana, D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood106, 376–383 (2005). ArticleCASPubMedPubMed Central Google Scholar
Li, L. et al. Expression of chimeric antigen receptors in natural killer cells with a regulatory-compliant non-viral method. Cancer Gene Ther.17, 147–154 (2009). ArticleCASPubMedPubMed Central Google Scholar
Shimasaki, N. et al. A clinically adaptable method to enhance the cytotoxicity of natural killer cells against B-cell malignancies. Cytotherapy14, 830–840 (2012). ArticleCASPubMed Google Scholar
Alsamah, W. & Romia, Y. Modification of natural killer cells to target tumors. Int. J. Pharm. Clin. Res.6, 97–100 (2014). Google Scholar
Altvater, B. et al. 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates natural killer cell activation to leukemia and neuroblastoma cells. Clin. Cancer Res.15, 4857–4866 (2009). ArticleCASPubMedPubMed Central Google Scholar
Müller, N. et al. Engineering NK cells modified with an EGFRvIII-specific chimeric antigen receptor to overexpress CXCR4 improves immunotherapy of CXCL12/SDF-1α-secreting glioblastoma. J. Immunother.38, 197–210 (2015). ArticleCASPubMedPubMed Central Google Scholar
Han, J. et al. CAR-engineered NK cells targeting wild-type EGFR and EGFRvIII enhance killing of glioblastoma and patient-derived glioblastoma stem cells. Sci. Rep.5, 11483 (2015). ArticlePubMedPubMed Central Google Scholar
Boissel, L. et al. Retargeting NK-92 cells by means of CD19- and CD20-specific chimeric antigen receptors compares favorably with antibody-dependent cellular cytotoxicity. Oncoimmunology2 (2013).
Barber, A., Rynda, A. & Sentman, C. L. Chimeric NKG2D expressing T cells eliminate immunosuppression and activate immunity within the ovarian tumor microenvironment. J. Immunol.183, 6939–6947 (2009). ArticleCASPubMed Google Scholar
Roy, S. et al. NK cells lyse T regulatory cells that expand in response to an intracellular pathogen. J. Immunol.180, 1729–1736 (2008). ArticleCASPubMed Google Scholar
Zhang, T. & Sentman, C. L. Cancer immunotherapy using a bispecific NK receptor fusion protein that engages both T cells and tumor cells. Cancer Res.71, 2066–2076 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lehner, M. et al. Redirecting T cells to Ewing's sarcoma family of tumors by a chimeric NKG2D receptor expressed by lentiviral transduction or mRNA transfection. PLoS ONE7, e31210 (2012). ArticleCASPubMedPubMed Central Google Scholar
VanSeggelen, H. et al. T cells engineered with chimeric antigen receptors targeting NKG2D ligands display lethal toxicity in mice. Mol. Ther.http://dx.doi.org/10.1038/mt.2015.119 (2015).
Kudo, K. et al. T lymphocytes expressing a CD16 signaling receptor exert antibody-dependent cancer cell killing. Cancer Res.74, 93–103 (2014). ArticleCASPubMed Google Scholar
Tal, Y. et al. An NCR1-based chimeric receptor endows T-cells with multiple anti-tumor specificities. Oncotarget5, 10949–10958 (2014). ArticlePubMedPubMed Central Google Scholar
Zhang, T., Wu, M.-R. & Sentman, C. L. An NKp30-based chimeric antigen receptor promotes T cell effector functions and antitumor efficacy in vivo. J. Immunol.189, 2290–2299 (2012). ArticleCASPubMed Google Scholar
Asano, R. et al. Construction and humanization of a functional bispecific EGFR × CD16 diabody using a refolding system. FEBS J.279, 223–233 (2012). ArticleCASPubMed Google Scholar
Reusch, U. et al. A novel tetravalent bispecific TandAb (CD30/CD16A) efficiently recruits NK cells for the lysis of CD30+ tumor cells. MAbs6, 727–738 (2014). ArticlePubMed Central Google Scholar
Kellner, C. et al. Heterodimeric bispecific antibody-derivatives against CD19 and CD16 induce effective antibody-dependent cellular cytotoxicity against B-lymphoid tumor cells. Cancer Lett.303, 128–139 (2011). ArticleCASPubMed Google Scholar
Bruenke, J. et al. A recombinant bispecific single-chain Fv antibody against HLA class II and FcγRIII (CD16) triggers effective lysis of lymphoma cells. Br. J. Haematol.125, 167–179 (2004). ArticleCASPubMed Google Scholar
Hartmann, F. et al. Anti-CD16/CD30 bispecific antibody treatment for Hodgkin's disease role of infusion schedule and costimulation with cytokines. Clin. Cancer Res.7, 1873–1881 (2001). CASPubMed Google Scholar
Kasuya, K. et al. Bispecific anti-HER2 and CD16 single-chain antibody production prolongs the use of stem cell-like cell transplantation against HER2-overexpressing cancer. Int. J. Mol. Med.25, 209–215 (2010). CASPubMed Google Scholar
Shahied, L. S. et al. Bispecific minibodies targeting HER2/neu and CD16 exhibit improved tumor lysis when placed in a divalent tumor antigen binding format. J. Biol. Chem.279, 53907–53914 (2004). ArticleCASPubMed Google Scholar
Singer, H. et al. Effective elimination of acute myeloid leukemic cells by recombinant bispecific antibody derivatives directed against CD33 and CD16: J. Immunother.33, 599–608 (2010). ArticleCASPubMed Google Scholar
Wiernik, A. et al. Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16 × 33 bispecific killer cell engager and ADAM17 inhibition. Clin. Cancer Res.19, 3844–3855 (2013). ArticleCASPubMedPubMed Central Google Scholar
Vallera, D. A. et al. Heterodimeric bispecific single-chain variable-fragment antibodies against EpCAM and CD16 induce effective antibody-dependent cellular cytotoxicity against human carcinoma cells. Cancer Biother. Radiopharm.28, 274–282 (2013). ArticleCASPubMedPubMed Central Google Scholar
Spear, P., Wu, M.-R., Sentman, M.-L. & Sentman, C. L. NKG2D ligands as therapeutic targets. Cancer Immun.13, 8 (2013). PubMedPubMed Central Google Scholar
Strandmann, E. P. von et al. A novel bispecific protein (ULBP2-BB4) targeting the NKG2D receptor on natural killer (NK) cells and CD138 activates NK cells and has potent antitumor activity against human multiple myeloma in vitro and in vivo. Blood107, 1955–1962 (2006). ArticleCAS Google Scholar
Rothe, A. et al. The bispecific immunoligand ULBP2-aCEA redirects natural killer cells to tumor cells and reveals potent anti-tumor activity against colon carcinoma. Int. J. Cancer134, 2829–2840 (2014). ArticleCASPubMed Google Scholar
Germain, C. et al. MHC Class I-related chain A conjugated to antitumor antibodies can sensitize tumor cells to specific lysis by natural killer cells. Clin. Cancer Res.11, 7516–7522 (2005). ArticleCASPubMed Google Scholar
Stamova, S. et al. Simultaneous engagement of the activatory receptors NKG2D and CD3 for retargeting of effector cells to CD33-positive malignant cells. Leukemia25, 1053–1056 (2011). ArticleCASPubMed Google Scholar