Merlin and ERM proteins: unappreciated roles in cancer development? (original) (raw)
Baser, M. E., Evans, D. G. & Gutmann, D. H. Neurofibromatosis 2. Curr. Opin. Neurol.16, 27–33 (2003). ArticlePubMed Google Scholar
Trofatter, J. A. et al. A novel moesin-, ezrin-, radixin-like gene is a candidate for the Neurofibromatosis 2 tumor suppressor. Cell72, 791–800 (1993). ArticleCASPubMed Google Scholar
Rouleau, G. A. et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature363, 515–521 (1993). ArticleCASPubMed Google Scholar
McClatchey, A. I., Saotome, I., Ramesh, V., Gusella, J. F. & Jacks, T. The Nf2 tumor suppressor gene product is essential for extraembryonic development immediately prior to gastrulation. Genes Dev.11, 1253–1265 (1997). ArticleCASPubMed Google Scholar
McClatchey, A. I. et al. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev.12, 1121–1133 (1998). ArticleCASPubMedPubMed Central Google Scholar
Giovannini, M. et al. Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev.14, 1617–1630 (2000). CASPubMedPubMed Central Google Scholar
Kalamarides, M. et al. Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev.16, 1060–1065 (2002). ArticleCASPubMedPubMed Central Google Scholar
Doi, Y. et al. Normal development of mice and unimpaired cell adhesion/cell motility/actin-based cytoskeleton without compensatory up-regulation of ezrin or radixin in moesin gene knockout. J. Biol. Chem.274, 2315–2321 (1999). ArticleCASPubMed Google Scholar
Kikuchi, S. et al. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nature Genet.31, 320–325 (2002). ArticleCASPubMed Google Scholar
Bretscher, A., Edwards, K. & Fehon, R. G. ERM proteins and merlin: integrators at the cell cortex. Nature Rev. Mol. Cell Biol.3, 586–599 (2002). ArticleCAS Google Scholar
Tran Quang, C., Gautreau, A., Arpin, M. & Treisman, R. Ezrin function is required for ROCK-mediated fibroblast transformation by the Net and Dbl oncogenes. EMBO J.19, 4565–4576 (2000). ArticleCASPubMedPubMed Central Google Scholar
Crepaldi, T., Gautreau, A., Comoglio, P., Louvard, D. & Arpin, M. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J. Cell Biol.138, 423–434 (1997). ArticleCASPubMedPubMed Central Google Scholar
Wick, W. et al. Ezrin-dependent promotion of glioma cell clonogenecity, motility, and invasion mediated by BCL-2 and transforming growth factor-β2. J. Neurosci.21, 3360–3368 (2001). ArticleCASPubMedPubMed Central Google Scholar
Akisawa, N., Nishimori, I., Iwamura, T., Onishi, S. & Hollingsworth, M. A. High levels of ezrin expressed by human pancreatic adenocarcinoma cell lines with high metastatic potential. Biochem. Biophys. Res. Commun.258, 395–400 (1999). ArticleCASPubMed Google Scholar
Nestl, A. et al. Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Canc. Res.61, 1569–1577 (2001). CAS Google Scholar
Khanna, C. et al. Metastasis-associated differences in gene expression in a murine model of osteosarcoma. Canc. Res.61, 3750–3759 (2001). CAS Google Scholar
McCartney, B. M. & Fehon, R. G. Distinct cellular and subcellular patterns of expression imply distinct functions for the Drosophila homologues of moesin and the Neurofibromatosis 2 tumor suppressor, merlin. J. Cell Biol.133, 843–852 (1996). ArticleCASPubMed Google Scholar
Boedigheimer, M. & Laughon, A. Expanded: a gene involved in the control of cell proliferation in imaginal discs. Development118, 1291–1301 (1993). CASPubMed Google Scholar
Tran, Y. K. et al. A novel member of the NF2/ERM/4.1 superfamily with growth suppressing properties in lung cancer. Cancer Res.59, 35–43 (1999). CASPubMed Google Scholar
Chishti, A. et al. The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem. Sci.23, 281–282 (1998). ArticleCASPubMed Google Scholar
James, M. F., Manchanda, N., Gonzalez-Agosti, C., Hartwig, J. H. & Ramesh, V. The Neurofibromatosis 2 protein product merlin selectively binds F-actin but not G-actin, and stabilizes the filaments through a lateral association. Biochem. J.356, 377–386 (2001). ArticleCASPubMedPubMed Central Google Scholar
Scoles, D. R. et al. Neurofibromatosis 2 tumour suppressor schwannomin interacts with βII-spectrin. Nature Genet.18, 354–359 (1998). ArticleCASPubMed Google Scholar
Berryman, M., Gary, R. & Bretscher, A. Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis. J. Cell Biol.131, 1231–1242 (1995). ArticleCASPubMed Google Scholar
Gautreau, A., Louvard, D. & Arpin, M. Morphogenic effects of ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J. Cell Biol.150, 193–203 (2000). ArticleCASPubMedPubMed Central Google Scholar
Pearson, M. A., Reczek, D., Bretscher, A. & Karplus, P. A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell101, 259–270 (2000). ArticleCASPubMed Google Scholar
Nakamura, F., Amieva, M. R. & Furthmayr, H. Phosphorylation of threonine 558 in the carboxyl-terminal actin-binding domain of moesin by thrombin activation of human platelets. J. Biol. Chem.270, 31377–31385 (1995). ArticleCASPubMed Google Scholar
Matsui, T. et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol.140, 647–657 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bretscher, A. Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor. J. Cell Biol, 108, 921–930 (1989). ArticleCASPubMed Google Scholar
Krieg, J. & Hunter, T. Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J. Biol. Chem.267, 19258–19265 (1992). CASPubMed Google Scholar
Berryman, M., Franck, Z. & Bretscher, A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J. Cell Sci.105, 1025–1043 (1993). CASPubMed Google Scholar
Yang, H. -S. & Hinds, P. W. Increased ezrin expression and activation by cdk5 coincident with acquisition of the senescent phenotype. Mol. Cell11, 1163–1176 (2003). ArticleCASPubMed Google Scholar
Niggli, V., Andreoli, C., Roy, C. & Mangeat, P. Identification of a phosphatidylinositol-4,5-bisphosphate-binding domain in the N-terminal region of ezrin. FEBS Lett.376, 172–176 (1995). ArticleCASPubMed Google Scholar
Yonemura, S., Matsui, T., Tsukita, S. & Tsukita, S. Rho-dependent and -independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo. J. Cell Sci.115, 2569–2580 (2002). CASPubMed Google Scholar
Shaw, R. J., McClatchey, A. I. & Jacks, T. Regulation of the neurofibromatosis type 2 tumor suppressor protein, merlin, by adhesion and growth arrest stimuli. J. Biol. Chem.273, 7757–7764 (1998). ArticleCASPubMed Google Scholar
Shaw, R. J. et al. The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev. Cell.1, 63–72 (2001). ArticleCASPubMed Google Scholar
LaJeunesse, D. R., McCartney, B. M. & Fehon, R. G. Structural analysis of Drosophila merlin reveals functional domains important for growth control and subcellular localization. J. Cell Biol.141, 1589–1599 (1998). ArticleCASPubMedPubMed Central Google Scholar
Gonzalez-Agosti, C., Wiederhold, T., Herndon, M. E., Gusella, J. F. & Ramesh, V. Interdomain interaction of merlin isoforms and its influence on intermolecular binding to NHE-RF. J. Biol. Chem.274, 34438–34442 (1999). ArticleCASPubMed Google Scholar
Gronholm, M. et al. Homotypic and heterotypic interaction of the Neurofibromatosis 2 tumor suppressor protein merlin and the ERM protein. J. Cell Sci.112, 895–904 (1999). CASPubMed Google Scholar
Meng, J. J. et al. Interaction between two isoforms of the NF2 tumor suppressor protein, merlin, and between merlin and ezrin, suggesting modulation of ERM proteins by merlin. J. Neurosci. Res.62, 491–502 (2000). ArticleCASPubMed Google Scholar
Nguyen, R., Reczek, D. & Bretscher, A. Hierarchy of merlin and ezrin N- and C-terminal domain interactions in homo- and heterotypic associations and their relationship to binding of scaffolding proteins EBP50 and E3KARP. J. Biol. Chem.276, 7621–7629 (2001). ArticleCASPubMed Google Scholar
Shaw, R. J., Henry, M., Solomon, F. & Jacks, T. RhoA-dependent phosphorylation and relocalization of ERM proteins into apical membrane/actin protrusions in fibroblasts. Mol. Biol. Cell9, 403–419 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kissil, J. L., Johnson, K. C., Eckman, M. S. & Jacks, T. Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J. Biol. Chem.277, 10394–10399 (2002). ArticleCASPubMed Google Scholar
Xiao, G. H., Beeser, A., Chernoff, J. & Testa, J. R. p21-activated kinase links Rac/cdc42 signaling to merlin. J. Biol. Chem.277, 883–886 (2002). ArticleCASPubMed Google Scholar
Speck, O., Hughes, S. C., Noren, N. K., Kulikauskas, R. M. & Fehon, R. G. Moesin functions antagonistically to the Rho pathway to maintain epithelial integrity. Nature421, 83–87 (2003). ArticleCASPubMed Google Scholar
Lamb, R. F. et al. The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nature Cell Biol.2, 281–287 (2000). ArticleCASPubMed Google Scholar
Mackay, D. J., Esch, F., Furthmayr, H. & Hall, A. Rho- and rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J. Cell Biol.138, 927–938 (1997). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, K. et al. Interaction of radixin with Rho small G protein GDP/GTP exchange protein, Dbl. Oncogene16, 3279–3284 (1998). ArticlePubMedCAS Google Scholar
Takahashi, K. et al. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J. Biol. Chem.272, 23371–23375 (1997). ArticleCASPubMed Google Scholar
Maeda, M., Matsui, T., Imamura, M., Tsukita, S. & Tsukita, S. Expression level, subcellular distribution and rho-GDI binding affinity of merlin in comparison with ezrin/radixin/moesin proteins. Oncogene18, 4788–4797 (1999). ArticleCASPubMed Google Scholar
Sahai, E. & Marshall, C. RHO-GTPases and cancer. Nature Rev. Cancer2, 133–142 (2002). Article Google Scholar
LaJeunesse, D. R., McCartney, B. M. & Fehon, R. G. A systematic screen for dominant second-site modifiers of merlin/NF2 phenotypes reveals an interaction with blistered/DSRF and scribbler. Genetics, 158, 667–679 (2001). CASPubMedPubMed Central Google Scholar
DeClue, J. E. et al. Epidermal growth factor receptor expression in Neurofibromatosis type 1-related tumors and NF1 animal models. J. Clin. Invest.105, 1233–1124 (2000). ArticleCASPubMedPubMed Central Google Scholar
Scoles, D. R. et al. The Neurofibromatosis 2 tumor suppressor protein interacts with hepatocyte growth factor-regulated tyrosine kinase substrate. Hum. Mol. Genet.9, 1567–1574 (2000). ArticleCASPubMed Google Scholar
Reczek, D., Berryman, M. & Bretscher, A. Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J. Cell Biol.139, 169–179 (1997). ArticleCASPubMedPubMed Central Google Scholar
Murthy, A. et al. NHE-RF, a regulatory factor for Na(+)-H+ exchange, is a common interactor for merlin and ERM (MERM) proteins. J. Biol. Chem.273, 1273–1276 (1998). ArticleCASPubMed Google Scholar
Maudsley, S. et al. Platelet-derived growth factor receptor association with Na(+)/H(+) exchanger regulatory factor potentiates receptor activity. Mol. Cell Biol.20, 8352–8363 (2000). ArticleCASPubMedPubMed Central Google Scholar
Reczek, D. & Bretscher, A. Identification of EPI64, a TBC/rabGAP domain-containing microvillar protein that binds to the first PDZ domain of EBP50 and E3KARP. J. Cell Biol.153, 191–206 (2001). ArticleCASPubMedPubMed Central Google Scholar
Tsukita, S. et al. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeleton. J. Cell Biol.126, 391–401 (1994). ArticleCASPubMed Google Scholar
Sainio, M. et al. Neurofibromatosis 2 tumor suppressor protein colocalizes with ezrin and CD44 and associates with actin-containing cytoskeleton. J. Cell Sci.110, 2249–2260 (1997). CASPubMed Google Scholar
Morrison, H. et al. The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev.15, 968–980 (2001). ArticleCASPubMedPubMed Central Google Scholar
Orian-Rousseau, V., Chen, L., Sleeman, J. P., Herrlich, P. & Ponta, H. CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev.16, 3074–3086 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bourguignon, L. Y. et al. Interaction between the adhesion receptor, CD44, and the oncogene product, p185HER2, promotes human ovarian tumor cell activation. J. Biol. Chem.272, 27913–27918 (1997). ArticleCASPubMed Google Scholar
Sherman, L. S., Rizvi, T. A., Karyala, S. & Ratner, N. CD44 enhances neuregulin signaling by Schwann cells. J. Cell Biol.150, 1071–1084 (2000). ArticleCASPubMedPubMed Central Google Scholar
Fernandez-Valle, C. et al. Paxillin binds schwannomin and regulates its density-dependent localization and effect on cell morphology. Nature Genet.31, 354–362 (2002). ArticleCASPubMed Google Scholar
Lallemand, D., Curto, M., Saotome, I., Giovannini, M. & McClatchey, A. I. NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev.17, 1090–1100 (2003). ArticleCASPubMedPubMed Central Google Scholar
Pujuguet, P., Del Maestro, L., Gautreau, A., Louvard, D. & Arpin, M. Ezrin regulates E-cadherin-dependent adherens junction assembly through Rac1 activation. Mol. Biol. Cell14, 2181–2191 (2003). ArticleCASPubMedPubMed Central Google Scholar
Nollet, F., Berx, G. & van Roy, F. The role of the E-cadherin/catenin adhesion complex in the development and progression of cancer. Mol. Cell. Biol. Res. Comm.2, 77–85 (2000). ArticleCAS Google Scholar
Grazia Lampugnani, M. et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J. Cell Biol.161, 793–804 (2003). ArticlePubMedCAS Google Scholar
Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nature Rev. Cancer2, 442–454 (2002). ArticleCAS Google Scholar
Vermeer, P. D. et al. Segregation of receptor and ligand regulates activation of epithelial growth factor receptor. Nature422, 322–326 (2003). ArticleCASPubMed Google Scholar
Gautreau, A. et al. Mutant products of the NF2 tumor suppressor gene are degraded by the ubiquitin-proteasome pathway. J. Biol. Chem.277, 31279–31282 (2002). ArticleCASPubMed Google Scholar
Kimura, Y. et al. The involvement of calpain-dependent proteolysis of the tumor suppressor NF2 (merlin) in schwannomas and meningiomas. Nature Med.4, 915–922 (1998). ArticleCASPubMed Google Scholar
Korf, B. R. Clinical features and pathobiology of NF1. J. Child Neurol.17, 573–577 (2002). ArticlePubMed Google Scholar
Lee, W. C. & Testa, J. R. Somatic alterations in human malignant mesothelioma. Int. J. Oncol.14, 181–188 (1999). CASPubMed Google Scholar
Melendez-Vasquez, C. V. et al. Nodes of Ranvier form in association with ezrin-radixin-moesin (ERM)-positive Schwann cell processes. Proc. Natl Acad. Sci USA98, 1235–1240 (2001). ArticleCASPubMedPubMed Central Google Scholar
Scherer, S. S., Xu, T., Crino, P., Arroyo, E. J. & Gutmann, D. H. Ezrin, radixin, and moesin are components of Schwann cell microvilli. J. Neurosci Res.65, 150–164 (2001). ArticleCASPubMed Google Scholar
Cullinan, P., Sperling, A. I. & Burkhardt, J. K. The distal pole complex: a novel membrane domain distal to the immunological synapse. Immunol. Rev.189, 111–122 (2002). ArticleCASPubMed Google Scholar
Takeda, T., McQuistan, T., Orlando, R. A. & Farquhar, M. G. Loss of glomerular foot processes is associated with uncoupling of podocalyxin from the actin cytoskeleton. J. Clin. Invest.108, 289–301 (2001). ArticleCASPubMedPubMed Central Google Scholar
Denisenko-Nehrbass, N. et al. Association of Caspr/paranodin with tumour suppressor schwannomin/merlin and β1 integrin in the central nervous system. J. Neurochem.84, 209–221
Sherman, L. et al. Interdomain binding mediates tumor growth suppression by the NF2 gene product. Oncogene15, 2505–2509 (1997). ArticleCASPubMed Google Scholar
Johnson, K. C., Kissil, J. L., Fry, J. L. & Jacks, T. Cellular transformation by a FERM domain mutant of the _Nf2_-tumor suppressor gene. Oncogene21, 5990–5997 (2002). ArticleCASPubMed Google Scholar
Giovannini, M. et al. Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein. Genes Dev.13, 978–986 (1999). ArticleCASPubMedPubMed Central Google Scholar