The history of cancer epigenetics (original) (raw)
Feinberg, A. P. & Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature301, 89–92 (1983). CASPubMed Google Scholar
Gama-Sosa, M. A. et al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res.11, 6883–6894 (1983). CASPubMedPubMed Central Google Scholar
Goelz, S. E., Vogelstein, B., Hamilton, S. R. & Feinberg, A. P. Hypomethylation of DNA from benign and malignant human colon neoplasms. Science228, 187–190 (1985). CASPubMed Google Scholar
Feinberg, A. P., Gehrke, C. W., Kuo, K. C. & Ehrlich, M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res.48, 1159–1161 (1988). CASPubMed Google Scholar
Strichman-Almashanu, L. Z. et al. A genome-wide screen for normally methylated human CgG islands that can identify novel imprinted genes. Genome Res.12, 543–554 (2002). CASPubMedPubMed Central Google Scholar
Feinberg, A. P. & Vogelstein, B. Hypomethylation of ras oncogenes in primary human cancers. Biochem. Biophys. Res. Commun.111, 47–54 (1983). CASPubMed Google Scholar
De Smet, C. et al. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc. Natl Acad. Sci. USA93, 7149–7153 (1996). CASPubMedPubMed Central Google Scholar
Cho, B. et al. Promoter hypomethylation of a novel cancer/testis antigen gene CAGE is correlated with its aberrant expression and is seen in premalignant stage of gastric carcinoma. Biochem. Biophys. Res. Commun.307, 52–63 (2003) CASPubMed Google Scholar
Adorjan, P. et al. Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res.30, e21 (2002). PubMedPubMed Central Google Scholar
Iacobuzio-Donahue, C. A. et al. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am. J. Pathol.162, 1151–1162 (2003). CASPubMedPubMed Central Google Scholar
Oshimo, Y. et al. Promoter methylation of cyclin D2 gene in gastric carcinoma. Int. J. Oncol.23, 1663–1670 (2003). CASPubMed Google Scholar
Akiyama, Y., Maesawa, C., Ogasawara, S., Terashima, M. & Masuda, T. Cell-type-specific repression of the maspin gene is disrupted frequently by demethylation at the promoter region in gastric intestinal metaplasia and cancer cells. Am. J. Pathol.163, 1911–1919 (2003). CASPubMedPubMed Central Google Scholar
Cho, M. et al. Hypomethylation of the MN/CA9 promoter and upregulated MN/CA9 expression in human renal cell carcinoma. Br. J. Cancer85, 563–567 (2001). CASPubMedPubMed Central Google Scholar
Nakamura, N. & Takenaga, K. Hypomethylation of the metastasis-associated S100A4 gene correlates with gene activation in human colon adenocarcinoma cell lines. Clin. Exp. Metastasis16, 471–479 (1998). CASPubMed Google Scholar
Badal, V. et al. CpG methylation of human papillomavirus type 16 DNA in cervical cancer cell lines and in clinical specimens: genomic hypomethylation correlates with carcinogenic progression. J. Virol.77, 6227–6234 (2003). PubMedPubMed Central Google Scholar
De Capoa, A. et al. DNA demethylation is directly related to tumour progression: evidence in normal, pre-malignant and malignant cells from uterine cervix samples. Oncol. Rep.10, 545–549 (2003). CASPubMed Google Scholar
Sato, N. et al. Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res.63, 4158–4166 (2003). CASPubMed Google Scholar
Piyathilake, C. J. et al. Race- and age-dependent alterations in global methylation of DNA in squamous cell carcinoma of the lung (United States). Cancer Causes Control14, 37–42 (2003). CASPubMed Google Scholar
Lengauer, C., Kinzler, K. W. & Vogelstein, B. DNA methylation and genetic instability in colorectal cancer cells. Proc. Natl Acad. Sci. USA94, 2545–2550 (1997). CASPubMedPubMed Central Google Scholar
Pao, M. M. et al. DNA methylator and mismatch repair phenotypes are not mutually exclusive in colorectal cancer cell lines. Oncogene19, 943–952 (2000). CASPubMed Google Scholar
Kane, M. F. et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair- defective human tumor cell lines. Cancer Res.57, 808–811 (1997). CASPubMed Google Scholar
Cui, H., Horon, I. L., Ohlsson, R., Hamilton, S. R. & Feinberg, A. P. Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nature Med.4, 1276–1280 (1998). CASPubMed Google Scholar
Qu, G. Z., Grundy, P. E., Narayan, A. & Ehrlich, M. Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet. Cytogenet.109, 34–39 (1999). CASPubMed Google Scholar
Yeh, A. et al. Chromosome arm 16q in Wilms tumors: unbalanced chromosomal translocations, loss of heterozygosity, and assessment of the CTCF gene. Genes Chromosomes Cancer35, 156–163 (2002). CASPubMed Google Scholar
Hansen, R. S. et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl Acad. Sci. USA96, 14412–14417 (1999). CASPubMedPubMed Central Google Scholar
Xu, G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature402, 187–191 (1999). CASPubMed Google Scholar
Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell99, 247–257 (1999). CASPubMed Google Scholar
Eden, A., Gaudet, F., Waghmare, A. & Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science300, 455 (2003). CASPubMed Google Scholar
Suter, C. M., Martin, D. I. & Ward, R. L. Hypomethylation of L1 retrotransposons in colorectal cancer and adjacent normal tissue. Int. J. Colorectal Dis. 8 Oct 2003 (doi: 10.1007/s00384-003-0539-3).
Nakayama, M. et al. Hypomethylation status of CpG sites at the promoter region and overexpression of the human MDR1 gene in acute myeloid leukemias. Blood92, 4296–4307 (1998). CASPubMed Google Scholar
Takaguchi, M., Achanzar, W. E., Qu, W., Li, G. & Waalkes, M. P. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp. Cell Res.286, 355–365 (2003). Google Scholar
Okoji, R. S., Yu, R. C., Maronpot, R. R. & Froines, J. R. Sodium arsenite administration via drinking water increases genome-wide and Ha-ras DNA hypomethylation in methyl-deficient C57BL/6J mice. Carcinogenesis23, 777–785 (2002). CASPubMed Google Scholar
Li, H. & Minarovits, J. Host cell-dependent expression of latent Epstein–Barr virus genomes: regulation by DNA methylation. Adv. Cancer Res.89, 133–156 (2003). CASPubMed Google Scholar
Heijmans, B. T. et al. A common variant of the methylenetetrahydrofolate reductase gene (1p36) is associated with an increased risk of cancer. Cancer Res.63, 1249–1253 (2003). CASPubMed Google Scholar
Chen, J. et al. A methylenetetrahydrofolate reductase polymorphism and the risk of colorectal cancer. Cancer Res.56, 4862–4864 (1996). CASPubMed Google Scholar
Pufulete, M. et al. Folate status, genomic DNA hypomethylation, and risk of colorectal adenoma and cancer: a case control study. Gastroenterology124, 1240–1248 (2003). CASPubMed Google Scholar
Poirier, L. A. Folate deficiency in rats bearing the Walker tumor 256 and the Novikoff hepatoma. Cancer Res.33, 2109–2113 (1973). CASPubMed Google Scholar
Gibbons, R. J. et al. Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nature Genet.24, 368–371 (2000). CASPubMed Google Scholar
Versteege, I. et al. Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature394, 203–206 (1998). CASPubMed Google Scholar
Fan, T. et al. Lsh-deficient murine embryonal fibroblasts show reduced proliferation with signs of abnormal mitosis. Cancer Res.63, 4677–4683 (2003). CASPubMed Google Scholar
Saito, Y. et al. Overexpression of a splice variant of DNA methyltransferase 3b, DNMT3b4, associated with DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis. Proc. Natl Acad. Sci. USA99, 10060–10065 (2002). CASPubMedPubMed Central Google Scholar
Baylin, S. B. et al. DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res.46, 2917–2922 (1986). CASPubMed Google Scholar
Greger, V., Passarge, E., Hopping, W., Messmer, E. & Horsthemke, B. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum. Genet.83, 155–158 (1989). CASPubMed Google Scholar
Sakai, T. et al. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. Am. J. Hum. Genet.48, 880–888 (1991). CASPubMedPubMed Central Google Scholar
Ohtani-Fujita, N. et al. CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene8, 1063–1067 (1993). CASPubMed Google Scholar
Greger, V. et al. Frequency and parental origin of hypermethylated RB1 alleles in retinoblastoma. Hum. Genet.94, 491–496 (1994). CASPubMed Google Scholar
Gonzalez-Zulueta, M. et al. Methylation of the 5′ Cpg island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res.55, 4531–4535 (1995). CASPubMed Google Scholar
Graff, J. R. et al. E-Cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res.55, 5195–5199 (1995). CASPubMed Google Scholar
Herman, J. G. et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl Acad. Sci. USA91, 9700–9704 (1994). CASPubMedPubMed Central Google Scholar
Merlo, A. et al. 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nature Med.1, 686–692 (1995). ArticleCASPubMed Google Scholar
Cunningham, J. M. et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res.58, 3455–3460 (1998). CASPubMed Google Scholar
Veigl, M. L. et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc. Natl Acad. Sci. USA95, 8698–8702 (1998). CASPubMedPubMed Central Google Scholar
Toyota, M. et al. CpG island methylator phenotype in colorectal cancer. Proc. Natl Acad. Sci. USA96, 8681–8686 (1999). CASPubMedPubMed Central Google Scholar
West, R. W. & Barrett, J. C. Inactivation of a tumor suppressor function in immortal Syrian hamster cells by N-methyl-N′-nitro-N-nitrosoguanidine and by 5-aza-2′-deoxycytidine. Carcinogenesis14, 285–289 (1993). CASPubMed Google Scholar
Rhee, I. et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature416, 552–556 (2002). CASPubMed Google Scholar
Robert, M. F. et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nature Genet.33, 61–65 (2003). CASPubMed Google Scholar
Bestor, T. H. Unanswered questions about the role of promoter methylation in carcinogenesis. Ann. NY Acad. Sci.983, 22–27 (2003). CASPubMed Google Scholar
Hajra, K. M., Ji, X. & Fearon, E. R. Extinction of E-cadherin expression in breast cancer via a dominant repression pathway acting on proximal promoter elements. Oncogene18, 7274–7279 (1999). CASPubMed Google Scholar
Bachman, K. E. et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell3, 89–95 (2003). CASPubMed Google Scholar
Clark, S. J. & Melki, J. DNA methylation and gene silencing in cancer: which is the guilty party? Oncogene21, 5380–5387 (2002). CASPubMed Google Scholar
Ehrlich, M. et al. Hypomethylation and hypermethylation of DNA in Wilms tumors. Oncogene21, 6694–6702 (2002). CASPubMed Google Scholar
Van Zee, K. J., Calvano, J. E. & Bisogna, M. Hypomethylation and increased gene expression of p16INK4a in primary and metastatic breast carcinoma as compared to normal breast tissue. Oncogene16, 2723–2727 (1998). CASPubMed Google Scholar
Surani, M. A., Barton, S. C. & Norris, M. L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature308, 548–550 (1984). CASPubMed Google Scholar
McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell37, 179–183 (1984). CASPubMed Google Scholar
Kajii, T. & Ohama, K. Androgenetic origin of hydatidiform mole. Nature268, 633 (1977). CASPubMed Google Scholar
Linder, D., McCaw, B., Kaiser, X. & Hecht, F. Parthenogenetic origin of benign ovarian teratomas. N. Engl. J. Med.292, 63–66 (1975). CASPubMed Google Scholar
Pal, N. et al. Preferential loss of maternal alleles in sporadic Wilms' tumor. Oncogene5, 1665–1668 (1990). CASPubMed Google Scholar
Schroeder, W. T. et al. Nonrandom loss of maternal chromosome 11 alleles in Wilms tumors. Am. J. Hum. Genet.40, 413–420 (1987). CASPubMedPubMed Central Google Scholar
Scrable, H. et al. A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proc. Natl Acad. Sci. USA86, 7480–7484 (1989). CASPubMedPubMed Central Google Scholar
Williams, J. C., Brown, K. W., Mott, M. G. & Maitland, N. J. Maternal allele loss in Wilms' tumor. Lancet1, 283–284 (1989). CASPubMed Google Scholar
Brown, K. W., Williams, J. C., Maitland, N. J. & Mott, M. G. Genomic imprinting and the Beckwith–Wiedemann syndrome. Am. J. Hum. Genet.46, 1000–1001 (1990). CASPubMedPubMed Central Google Scholar
Koufos, A. et al. Familial Wiedemann–Beckwith syndrome and a second Wilms tumor locus both map to 11p15.5. Am. J. Hum. Genet.44, 711–719 (1989). CASPubMedPubMed Central Google Scholar
Ping, A. J. et al. Genetic linkage of Beckwith–Wiedemann syndrome to 11p15. Am. J. Hum. Genet.44, 720–723 (1989). CASPubMedPubMed Central Google Scholar
Mannens, M. et al. Parental imprinting of human chromosome region 11p15.3-pter involved in the Beckwith–Wiedemann syndrome and various human neoplasia. Eur. J. Hum. Genet.2, 3–23 (1994). CASPubMed Google Scholar
Zhang, Y. & Tycko, B. Monoallelic expression of the human H19 gene. Nature Genet.1, 40–44 (1992). CASPubMed Google Scholar
Giannoukakis, N., Deal, C., Paquette, J., Goodyer, C. G. & Polychronakos, C. Parental genomic imprinting of the human IGF2 gene. Nature Genet.4, 98–101 (1993). CASPubMed Google Scholar
Ohlsson, R. et al. IGF2 is parentally imprinted during human embryogenesis and in the Beckwith–Wiedemann syndrome. Nature Genet.4, 94–97 (1993). CASPubMed Google Scholar
Rainier, S. et al. Relaxation of imprinted genes in human cancer. Nature362, 747–749 (1993). CASPubMed Google Scholar
Ogawa, O. et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature362, 749–751 (1993). CASPubMed Google Scholar
Barlow, D. P., Stoger, R., Herrmann, B. G., Saito, K. & Schweifer, N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature349, 84–87 (1991). CASPubMed Google Scholar
Bartolomei, M., Zemel, S. & Tilghman, S. M. Parental imprinting of the mouse H19 gene. Nature351, 153–155 (1991). CASPubMed Google Scholar
DeChiara, T. M., Robertson, E. J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor-2 gene. Cell64, 849–859 (1991). CASPubMed Google Scholar
Glenn, C. C., Porter, K. A., Jong, M. T., Nicholls, R. D. & Driscoll, D. J. Functional imprinting and epigenetic modification of the human SNRPN gene. Hum Mol. Genet.2, 2001–2005 (1993). CASPubMed Google Scholar
Leff, S. E. et al. Maternal imprinting of the mouse Snrpn gene and conserved linkage homology with the human Prader–Willi syndrome region. Nature Genet.2, 259–264 (1992). CASPubMed Google Scholar
Li, E., Beard, C. & Jaenisch, R. Role for DNA methylation in genomic imprinting. Nature366, 362–365 (1993). CASPubMed Google Scholar
Onyango, P. et al. Sequence and comparative analysis of the mouse 1 megabase region orthologous to the human 11p15 imprinted domain. Genome Res.10, 1697–1710 (2000). CASPubMed Google Scholar
Paulsen, M. et al. Syntenic organization of the mouse distal chromosome 7 imprinting cluster and the Beckwith–Wiedemann syndrome region in chromosome 11p15.5. Hum. Mol. Genet.7, 1149–1159 (1998). CASPubMed Google Scholar
Qian, N. et al. The IPL gene on chromosome 11p15.5 is imprinted in humans and mice and is similar to TDAG51, implicated in Fas expression and apoptosis. Hum. Mol. Genet.6, 2021–2029 (1997). CASPubMed Google Scholar
Dao, D. et al. IMPT1, an imprinted gene similar to polyspecific transporter and multi-drug resistance genes. Hum. Mol. Genet.7, 597–608 (1998). CASPubMed Google Scholar
Moulton, T. et al. Epigenetic lesions at the H19 locus in Wilms' tumour patients. Nature Genet.7, 440–447 (1994). CASPubMed Google Scholar
Steenman, M. J. et al. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms' tumour. Nature Genet7, 433–439 (1994). CASPubMed Google Scholar
Okamoto, K., Morison, I. M., Taniguchi, T. & Reeve, A. E. Epigenetic changes at the insulin-like growth factor II/H19 locus in developing kidney is an early event in Wilms tumorigenesis. Proc. Natl Acad. Sci. USA94, 5367–5371 (1997). CASPubMedPubMed Central Google Scholar
Hao, Y., Crenshaw, T., Moulton, T., Newcomb, E. & Tycko, B. Tumor-suppressor activity of H19 RNA. Nature365, 764–767 (1993). CASPubMed Google Scholar
Christofori, G., Naik, P. & Hanahan, D. Deregulation of both imprinted and expressed alleles of the insulin-like growth factor 2 gene during β-cell tumorigenesis. Nature Genet.10, 196–201 (1995). CASPubMed Google Scholar
Christofori, G., Naik, P. & Hanahan, D. A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature369, 414–418 (1994). CASPubMed Google Scholar
Ravenel, J. D. et al. Loss of imprinting of insulin-like growth factor-II (IGF2) gene in distinguishing specific biologic subtypes of Wilms tumor. J. Natl Cancer Inst.93, 1698–1703 (2001). CASPubMed Google Scholar
Sanson, M., Leuraud, P., Marie, Y., Delattre, J. Y. & Hoang-Xuan, K. Preferential loss of paternal 19q, but not 1p, alleles in oligodendrogliomas. Ann. Neurol.52, 105–107 (2002). CASPubMed Google Scholar
Maegawa, S. et al. Epigentic silencing of PEG3 gene expression in human glioma cell lines. Mol. Carcinogen.31, 1–9 (2001). CAS Google Scholar
Jenkins, R. B., Curran, W., Scott, C. B. & Cairncross, G. Pilot evaluation of 1p and 19q deletions in anaplastic oligodendrogliomas collected by a national cooperative cancer treatment group. Am. J. Clin. Oncol.24, 506–508 (2001). CASPubMed Google Scholar
Li, L. et al. Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science284, 330–333 (1999). CASPubMed Google Scholar
Kohda, T. et al. Tumour suppressor activity of human imprinted gene PEG3 in a glioma cell line. Genes Cells6, 237–247 (2001). CASPubMed Google Scholar
Maegawa, S. et al. Epigenetic silencing of PEG3 gene expression in human glioma cell lines. Mol. Carcinogen.31, 1–9 (2001). CAS Google Scholar
Caron, H. et al. Chromosome bands 1p35-36 contain two distinct neuroblastoma tumor suppressor loci, one of which is imprinted. Genes Chromosomes Cancer30, 168–174 (2001). CASPubMed Google Scholar
Morison, I. M., Ellis, L. M., Teague, L. R. & Reeve, A. E. Preferential loss of maternal 9p alleles in childhood acute lymphoblastic leukemia. Blood99, 375–377 (2002). CASPubMed Google Scholar
Yuan, J. et al. Aberrant methylation and silencing of ARHI, an imprinted tumor suppressor gene in which the function is lost in breast cancers. Cancer Res.63, 4174–4180 (2003). CASPubMed Google Scholar
Lee, M. P. et al. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith–Wiedemann syndrome and is independent of insulin-like growth factor II imprinting. Proc. Natl Acad. Sci. USA96, 5203–5208 (1999). CASPubMedPubMed Central Google Scholar
Smilinich, N. J. et al. A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith–Wiedemann syndrome. Proc. Natl Acad. Sci. USA96, 8064–8069 (1999). CASPubMedPubMed Central Google Scholar
Buschhausen, G., Wittig, B., Graessmann, M. & Graessmann, A. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc. Natl Acad. Sci. USA84, 1177–1181 (1987). CASPubMedPubMed Central Google Scholar
Keshet, I., Lieman-Hurwitz, J. & Cedar, H. DNA methylation affects the formation of active chromatin. Cell44, 535–543 (1986). CASPubMed Google Scholar
Lewis, J. D. et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell69, 905–914 (1992). CASPubMed Google Scholar
Meehan, R. R., Lewis, J. D. & Bird, A. P. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res.20, 5085–5092 (1992). CASPubMedPubMed Central Google Scholar
Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet.19, 187–191 (1998). CASPubMed Google Scholar
Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature393, 386–389 (1998). CASPubMed Google Scholar
Rountree, M. R., Bachman, K. E. & Baylin, S. B. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genet.25, 269–277 (2000). CASPubMed Google Scholar
Wade, P. A. et al. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nature Genet.23, 62–66 (1999). CASPubMed Google Scholar
Roder, K. et al. Transcriptional repression by Drosophila methyl-CpG-binding proteins. Mol. Cell Biol.20, 7401–7409 (2000). CASPubMedPubMed Central Google Scholar
Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406, 593–599 (2000). CASPubMed Google Scholar
Strahl, B. D., Ohba, R., Cook, R. G. & Allis, C. D. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl Acad. Sci. USA96, 14967–14972 (1999). CASPubMedPubMed Central Google Scholar
Nguyen, C. T. et al. Histone H3-lysine 9 methylation is associated with aberrant gene silencing in cancer cells and is rapidly reversed by 5-aza-2′-deoxycytidine. Cancer Res.62, 6456–6461 (2002). CASPubMed Google Scholar
Yoder, J. A., Walsh, C. P. & Bestor, T. H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet.13, 335–340 (1997). CASPubMed Google Scholar
Ahmad, K. & Henikoff, S. Histone H3 variants specify modes of chromatin assembly. Proc. Natl Acad. Sci. USA99, S16477–S16484 (2002). Google Scholar
Bannister, A. J., Schneider, R. & Kouzarides, T. Histone methylation: dynamic or static? Cell109, 801–806 (2002). CASPubMed Google Scholar
Lobanenkov, V. V., Nicolas, R. H., Plumb, M. A., Wright, C. A. & Goodwin, G. H. Sequence-specific DNA-binding proteins which interact with (G + C)-rich sequences flanking the chicken c-myc gene. Eur. J. Biochem.159, 181–188 (1986). CASPubMed Google Scholar
Holmgren, C. et al. CpG methylation regulates the Igf2/H19 insulator. Curr. Biol.11, 1128–1130 (2001). CASPubMed Google Scholar
Hark, A. T. et al. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature405, 486–489 (2000). CASPubMed Google Scholar
Bell, A. C., West, A. G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell98, 387–396 (1999). CASPubMed Google Scholar
Cui, H. et al. Loss of imprinting of insulin-like growth factor-II in Wilms' tumor commonly involves altered methylation but not mutations of CTCF or its binding site. Cancer Res.61, 4947–4950 (2001). CASPubMed Google Scholar
Cui, H. et al. Loss of imprinting in colorectal cancer linked to hypomethylation of H19 and IGF2. Cancer Res.62, 6442–6446 (2002). CASPubMed Google Scholar
Nakagawa, H. et al. Loss of imprinting of the insulin-like growth factor II gene occurs by biallelic methylation in a core region of H19-associated CTCF-binding sites in colorectal cancer. Proc. Natl Acad. Sci. USA98, 591–596 (2001). CASPubMed Google Scholar
Loukinov, D. I. et al. BORIS, a novel male germ-line-specific protein associated with epigenetic reprogramming events, shares the same 11-zinc-finger domain with CTCF, the insulator protein involved in reading imprinting marks in the soma. Proc. Natl Acad. Sci. USA99, 6806–6811 (2002). CASPubMedPubMed Central Google Scholar
Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature419, 624–629 (2002). CASPubMed Google Scholar
DeBaun, M. R. & Tucker, M. A. Risk of cancer during the first four years of life in children from The Beckwith–Wiedemann Syndrome Registry. J. Pediatr.132, 398–400 (1998). CASPubMed Google Scholar
Weksberg, R., Shen, D. R., Fei, Y. L., Song, Q. L., & Squire, J. Disruption of insulin-like growth factor 2 imprinting in Beckwith–Wiedemann syndrome. Nature Genet.5, 143–150 (1993). CASPubMed Google Scholar
Hatada, I. et al. An imprinted gene p57KIP2 is mutated in Beckwith–Wiedemann syndrome. Nature Genet.14, 171–1733 (1996). CASPubMed Google Scholar
Tycko, B. Genomic imprinting and cancer. Results Probl. Cell. Differ.25, 133–169 (1999). CASPubMed Google Scholar
Engel, J. R. et al. Epigenotype-phenotype correlations in Beckwith–Wiedemann syndrome. J. Med. Genet.37, 921–926 (2000). CASPubMedPubMed Central Google Scholar
Bliek, J. et al. Increased tumour risk for BWS patients correlates with aberrant H19 and not KCNQ1OT1 methylation: occurrence of KCNQ1OT1 hypomethylation in familial cases of BWS. Hum. Mol. Genet.10, 467–476 (2001). CASPubMed Google Scholar
Weksberg, R. et al. Tumor development in the Beckwith–Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1. Hum. Mol. Genet.10, 2989–3000 (2001). CASPubMed Google Scholar
DeBaun, M. R. et al. Epigenetic alterations of H19 and LIT1 distinguish patients with Beckwith–Wiedemann syndrome with cancer and birth defects. Am. J. Hum. Genet.70, 604–611 (2002). CASPubMedPubMed Central Google Scholar
DeBaun, M. R., Niemitz, E. L. & Feinberg, A. P. Association of in vitro fertilization with Beckwith–Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am. J. Hum. Genet.72, 156–160 (2002). PubMedPubMed Central Google Scholar
Maher, E. R. et al. Beckwith–Wiedemann syndrome and assisted reproduction technology (ART). J. Med. Genet.40, 62–64 (2003). CASPubMedPubMed Central Google Scholar
Cui, H. et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science299, 6442–6446 (2003). Google Scholar
Belinsky, S. A. et al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl Acad. Sci. USA95, 11891–11896 (1998). CASPubMedPubMed Central Google Scholar
Sandovici, I. et al. Familial aggregation of abnormal methylation of parental alleles at the IGF2/H19 and IGF2R differentially methylated regions. Hum. Mol. Genet.12, 1569–1578 (2003). CASPubMed Google Scholar
Laird, P. W. et al. Suppression of intestinal neoplasia by DNA hypomethylation. Cell81, 197–205 (1995). CASPubMed Google Scholar
Gaudet, F. et al. Induction of tumors in mice by genomic hypomethylation. Science300, 489–492 (2003). CASPubMed Google Scholar
Chen, W. Y. et al. Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nature Genet.33, 197–202 (2003). CASPubMed Google Scholar
Ziemin-van der Poel, S. et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc. Natl Acad. Sci. USA88, 10735–10739 (1991). CASPubMedPubMed Central Google Scholar
Tkachuk, D. C., Kohler, S. & Cleary, M. L. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell71, 691–700 (1992). CASPubMed Google Scholar
Gu, Y. et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell71, 701–708 (1992). CASPubMed Google Scholar
Nakamura, T. et al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol. Cell10, 1119–1128 (2002). CASPubMed Google Scholar
El-Deiry, W. S. et al. High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. Proc. Natl Acad. Sci. USA88, 3470–3474 (1991). CASPubMedPubMed Central Google Scholar
Lee, P. J. et al. Limited upregulation of DNA methyltransferase in human colon cancer reflecting increased cell proliferation. Proc. Natl Acad. Sci. USA93, 10366–10370 (1996). CASPubMedPubMed Central Google Scholar
De Marzo, A. M. et al. Abnormal regulation of DNA methyltransferase expression during colorectal carcinogenesis. Cancer Res.59, 3855–3860 (1999). CASPubMed Google Scholar
Eads, C. A. et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res.59, 2302–2306 (1999). CASPubMed Google Scholar
Di Croce, L. et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science295, 1079–1082 (2002). CASPubMed Google Scholar
Esteller, M. et al. Cancer epigenetics and methylation. Science297, 1807–1808 (2002). PubMed Google Scholar
Hajra, K. M., Chen, D. Y. & Fearon, E. R. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res.62, 1613–1618 (2002). CASPubMed Google Scholar
Dunaief, J. L. et al. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell79, 119–130 (1994). CASPubMed Google Scholar
Luo, R. X., Postigo, A. A. & Dean, D. C. Rb interacts with histone deacetylase to repress transcription. Cell92, 463–473 (1998). CASPubMed Google Scholar
Magnaghi-Jaulin, L. et al. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature391, 601–605 (1998). CASPubMed Google Scholar
Dahiya, A., Wong, S., Gonzalo, S., Gavin, M. & Dean, D. C. Linking the Rb and polycomb pathways. Mol. Cell8, 557–569 (2001). CASPubMed Google Scholar
Pradhan, S. & Kim, G. D. The retinoblastoma gene product interacts with maintenance human DNA (cytosine-5) methyltransferase and modulates its activity. EMBO J.21, 779–788 (2002). CASPubMedPubMed Central Google Scholar
Robertson, K. D. et al. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genet.25, 338–342 (2000). CASPubMed Google Scholar
Steele-Perkins, G. et al. Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily. Genes Dev.15, 2250–2262 (2001). CASPubMedPubMed Central Google Scholar
Hsiao, W. -L., Gattoni-Celli, S. & Weinstein, I. B. Effects of 5-azacytidine on the progressive nature of cell transformation. Mol. Cell. Biol.5, 1800–1803 (1985). CASPubMedPubMed Central Google Scholar
Taylor, S. M. & Jones, P. A. Multiple new phenotypes induced in 10T 1/2 and 3T3 cells treated with 5-azacytidine. Cell17, 771–779 (1979). CASPubMed Google Scholar
Daskalakis, M. et al. Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-aza-2′-deoxycytidine (decitabine) treatment. Blood100, 2957–2964 (2002). CASPubMed Google Scholar
Juttermann, R., Li, E. & Jaenisch, R. Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc. Natl Acad. Sci. USA91, 11797–11801 (1994). CASPubMedPubMed Central Google Scholar
Cheng, J. C. et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J. Natl Cancer Inst.95, 399–409 (2003). CASPubMed Google Scholar
Barletta, J. M., Rainier, S. & Feinberg, A. P. Reversal of loss of imprinting in tumor cells by 5-aza-2′-deoxycytidine. Cancer Res.57, 48–50 (1997). CASPubMed Google Scholar
Cameron, E. E., Bachman, K. E., Myohanen, S., Herman, J. G. & Baylin, S. B. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nature Genet.21, 103–107 (1999). CASPubMed Google Scholar
Shaker, S., Bernstein, M., Momparler, L. F. & Momparler, R. L. Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2′-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells. Leuk. Res.27, 437–444 (2003). CASPubMed Google Scholar
Eden, A., Gaudet, F. & Jaenisch, R. Response to comment on “Chromosomal instability and tumors promoted by dna hypomethylation” and “Induction of tumors in mice by genomic hypomethylation”. Science302, 1153 (2003). CAS Google Scholar
Yang, A. S., Estecio, M. R., Garcia–Manero, G., Kantarjian, H. M. & Issa, J. P. Comment on “Chromosomal instability and tumors promoted by DNA hypomethylation” and “Induction of tumors in nice by genomic hypomethylation”. Science302, 1153 (2003). CASPubMed Google Scholar
Mohandas, T., Sparkes, R. S. & Shapiro, L. J. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science211, 393–396 (1981). CASPubMed Google Scholar
Wolf, S. F., Jolly, D. J., Lunnen, K. D., Friedmann, T., & Migeon, B. R. Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: implications for X-chromosome inactivation. Proc. Natl Acad. Sci. USA81, 2806–2810 (1984). CASPubMedPubMed Central Google Scholar
Antequera, F., Macleod, D. & Bird, A. P. Specific protection of methylated CpGs in mammalian nuclei. Cell58, 509–517 (1989). CASPubMed Google Scholar
Hansen, R. S. & Gartler, S. M. 5-azacytidine-induced reactivation of the human X chromosome-linked PGK1 gene is associated with a large region of cytosine demethylation in the 5′ CpG island. Proc. Natl Acad. Sci. USA87, 4174–4178 (1990). CASPubMedPubMed Central Google Scholar
Jeppesen, P. & Turner, B. M. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell74, 281–289 (1993). CASPubMed Google Scholar