Basal cell carcinomas: attack of the hedgehog (original) (raw)
Miller, D. L. Nonmelanoma skin cancer in the United States: incidence. J. Am. Acad. Dermatol.30, 774–778 (1994). ArticleCASPubMed Google Scholar
Housman, T. S. et al. Skin cancer is among the most costly of all cancers to treat for the Medicare population. J. Am. Acad. Dermatol.48, 425–429 (2003). ArticlePubMed Google Scholar
Rubin, A. I., Chen, E. H. & Ratner, D. Basal-cell carcinoma. N. Eng. J. Med.353, 2262–2269 (2005). This paper gives an authoritative, more complete review of the more clinical aspects of this tumour. ArticleCAS Google Scholar
Karagas, M. R. et al. Use of tanning devices and risk of basal cell and squamous cell skin cancers. J. Natl Cancer Inst.94, 224–226 (2002). ArticlePubMed Google Scholar
Marcil, I. & Stern, R. S. Risk of developing a subsequent nonmelanoma skin cancer in patients with a history of nonmelanoma skin cancer: a critical review of the literature and meta-analysis. Arch. Dermatol.136, 1524–1530 (2000). ArticleCASPubMed Google Scholar
Karagas, M. R. et al. Risk of subsequent basal cell carcinoma and squamous cell carcinoma of the skin among patients with prior skin cancer. JAMA267, 3305–3310 (1992). ArticleCASPubMed Google Scholar
Chuang, T. Y., Reizner, G. T., Elpern, D. J., Stone, J. L. & Farmer, E. R. Nonmelanoma skin cancer in Japanese ethnic Hawaiians in Kauai, Hawaii: an incidence report. J. Am. Acad. Dermatol.33, 422–426 (1995). ArticleCASPubMed Google Scholar
Chuang, T. Y., Reizner, G. T., Elpern, D. J., Stone, J. L. & Farmer, E. R. Non-melanoma skin cancer and keratoacanthoma in Filipinos: an incidence report from Kauai, Hawaii. Int. J. Dermatol.32, 717–718 (1993). ArticleCASPubMed Google Scholar
Hoshida, Y. et al. Cancer risk after renal transplantation in Japan. Int. J. Cancer71, 517–520 (1997). ArticleCASPubMed Google Scholar
Kricker, A., Armstrong, B. K., English, D. R. & Heenan, P. J. Does intermittent sun exposure cause basal cell carcinoma? A case-control study in Western Australia. Int. J. Cancer60, 489–494 (1995). ArticleCASPubMed Google Scholar
Rosso, S. et al. The multicentre south European study 'Helios'. II: Different sun exposure patterns in the aetiology of basal cell and squamous cell carcinomas of the skin. Br. J. Cancer73, 1447–1454 (1996). ArticleCASPubMedPubMed Central Google Scholar
Thompson, S. C., Jolley, D. & Marks, R. Reduction of solar keratoses by regular sunscreen use. N. Engl. J. Med.329, 1147–1151 (1993). ArticleCASPubMed Google Scholar
Pandeya, N., Purdie, D. M., Green, A. & Williams, G. Repeated occurrence of basal cell carcinoma of the skin and multifailure survival analysis: follow-up data from the Nambour Skin Cancer Prevention Trial. Am. J. Epidemiol.161, 748–754 (2005). ArticlePubMed Google Scholar
van der Pols, J. C., Williams, G. M., Pandeya, N., Logan, V. & Green, A. C. Prolonged prevention of squamous cell carcinoma of the skin by regular sunscreen use. Cancer Epidemiol. Biomarkers Prev.15, 2546–2548 (2006). ArticlePubMed Google Scholar
Kricker, A., Armstrong, B. K., English, D. R. & Heenan, P. J. A dose-response curve for sun exposure and basal cell carcinoma. Int. J. Cancer60, 482–488 (1995). ArticleCASPubMed Google Scholar
Guo, H. R., Yu, H. S., Hu, H. & Monson, R. R. Arsenic in drinking water and skin cancers: cell-type specificity (Taiwan, ROC). Cancer Causes Control12, 909–916 (2001). ArticleCASPubMed Google Scholar
Karagas, M. R. et al. Skin cancer risk in relation to toenail arsenic concentrations in a US population-based case-control study. Am. J. Epidemiol.153, 559–565 (2001). ArticleCASPubMed Google Scholar
Karagas, M. R., Stukel, T. A. & Tosteson, T. D. Assessment of cancer risk and environmental levels of arsenic in New Hampshire. Int. J. Hyg. Environ. Health205, 85–94 (2002). ArticleCASPubMed Google Scholar
Gailani, M. R. et al. Developmental defects in Gorlin syndrome related to a putative tumor suppressor gene on chromosome 9. Cell69, 111–117 (1992). ArticleCASPubMed Google Scholar
Hahn, H. et al. Mutations of the human homologue of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell85, 841–851 (1996). ArticleCASPubMed Google Scholar
Johnson, R. L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science272, 1668–1671 (1996). References 19–21 provide the original data linking basal cell carcinogenesis to aberrant activation of HH signalling. ArticleCASPubMed Google Scholar
Klein, R. D., Dykas, D. J. & Bale, A. E. Clinical testing for the nevoid basal cell carcinoma syndrome in a DNA diagnostic laboratory. Genet. Med.7, 611–619 (2005). ArticleCASPubMed Google Scholar
Ling, G. et al. PATCHED and p53 gene alterations in sporadic and hereditary basal cell cancer. Oncogene20, 7770–7778 (2001). ArticleCASPubMed Google Scholar
Ouhtit, A. et al. UV-radiation-specific p53 mutation frequency in normal skin as a predictor of risk of basal cell carcinoma. J. Natl Cancer Inst.90, 523–531 (1998). ArticleCASPubMed Google Scholar
Hutchin, M. E. et al. Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival: conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev.19, 214–223 (2005). This paper illustrates the requirement for continued HH signalling for BCC maintenance in a murine model of HH-driven BCC carcinogenesis. ArticleCASPubMedPubMed Central Google Scholar
Adolphe, C., Hetherington, R., Ellis, T. & Wainwright, B. Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res.66, 2081–2088 (2006). ArticleCASPubMed Google Scholar
Gailani, M. R. et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nature Genet.14, 78–81 (1996). ArticleCASPubMed Google Scholar
Aszterbaum, M. et al. Identification of mutations in the human PATCHED gene in sporadic basal cell carcinomas and in patients with the basal cell nevus syndrome. J. Invest. Dermatol.110, 885–888 (1998). ArticleCASPubMed Google Scholar
Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature391, 90–92 (1998). ArticleCASPubMed Google Scholar
Reifenberger, J. et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res.58, 1798–1803 (1998). CASPubMed Google Scholar
Lum, L. & Beachy, P. A. The Hedgehog response network: sensors, switches, and routers. Science304, 1755–1759 (2004). ArticleCASPubMed Google Scholar
Rohatgi, R. & Scott, M. P. Patching the gaps in Hedgehog signalling. Nature Cell Biol.9, 1005–1009 (2007). ArticleCASPubMed Google Scholar
Kinzler, K. W. et al. Identification of an amplified, highly expressed gene in a human glioma. Science236, 70–73 (1987). ArticleCASPubMed Google Scholar
Bhatia, N. et al. Gli2 is targeted for ubiquitination and degradation by β-TrCP ubiquitin ligase. J. Biol. Chem.281, 19320–19326 (2006). ArticleCASPubMed Google Scholar
Jiang, J. Regulation of Hh/Gli signaling by dual ubiquitin pathways. Cell Cycle5, 2457–2463 (2006). ArticleCASPubMed Google Scholar
Pan, Y., Bai, C. B., Joyner, A. L. & Wang, B. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol. Cell. Biol.26, 3365–3377 (2006). ArticleCASPubMedPubMed Central Google Scholar
Huangfu, D. et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature426, 83–87 (2003). ArticleCASPubMed Google Scholar
Corbit, K. C. et al. Vertebrate Smoothened functions at the primary cilium. Nature437, 1018–1021 (2005). ArticleCASPubMed Google Scholar
May, S. R. et al. Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev. Biol.287, 378–389 (2005). ArticleCASPubMed Google Scholar
Rohatgi, R., Milenkovic, L. & Scott, M. P. Patched1 regulates hedgehog signaling at the primary cilium. Science317, 372–376 (2007). ArticleCASPubMed Google Scholar
Bonifas, J. M. et al. Activation of expression of hedgehog target genes in basal cell carcinomas. J. Invest. Dermatol.116, 739–742 (2001). ArticleCASPubMed Google Scholar
Tojo, M., Kiyosawa, H., Iwatsuki, K. & Kaneko, F. Expression of a sonic hedgehog signal transducer, hedgehog-interacting protein, by human basal cell carcinoma. Br. J. Dermatol.146, 69–73 (2002). ArticleCASPubMed Google Scholar
Ashton, K. J., Weinstein, S. R., Maguire, D. J. & Griffiths, L. R. Molecular cytogenetic analysis of basal cell carcinoma DNA using comparative genomic hybridization. J. Invest. Dermatol.117, 683–686 (2001). ArticleCASPubMed Google Scholar
Reifenberger, J. et al. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br. J. Dermatol.152, 43–51 (2005). ArticleCASPubMed Google Scholar
Lindstrom, E., Shimokawa, T., Toftgard, R. & Zaphiropoulos, P. G. PTCH mutations: distribution and analyses. Hum. Mutat.27, 215–219 (2006). ArticleCASPubMed Google Scholar
Bodak, N. et al. High levels of patched gene mutations in basal-cell carcinomas from patients with xeroderma pigmentosum. Proc. Natl Acad. Sci. USA96, 5117–5122 (1999). ArticleCASPubMedPubMed Central Google Scholar
Daya-Grosjean, L. & Sarasin, A. UV-specific mutations of the human patched gene in basal cell carcinomas from normal individuals and xeroderma pigmentosum patients. Mutat. Res.450, 193–199 (2000). ArticleCASPubMed Google Scholar
Couve-Privat, S., Bouadjar, B., Avril, M. F., Sarasin, A. & Daya-Grosjean, L. Significantly high levels of ultraviolet-specific mutations in the smoothened gene in basal cell carcinomas from DNA repair-deficient xeroderma pigmentosum patients. Cancer Res.62, 7186–7189 (2002). CASPubMed Google Scholar
Moriwaki, S., Ray, S., Tarone, R. E., Kraemer, K. H. & Grossman, L. The effect of donor age on the processing of UV-damaged DNA by cultured human cells: reduced DNA repair capacity and increased DNA mutability. Mutat. Res.364, 117–123 (1996). ArticlePubMed Google Scholar
Rees, J. L. The genetics of sun sensitivity in humans. Am. J. Hum. Genet.75, 739–751 (2004). This remains an authoritative review of genetic factors predisposing to UV-induced skin cancers. ArticleCASPubMedPubMed Central Google Scholar
Han, J., Kraft, P., Colditz, G. A., Wong, J. & Hunter, D. J. Melanocortin 1 receptor variants and skin cancer risk. Int. J. Cancer119, 1976–1984 (2006). ArticleCASPubMed Google Scholar
Liboutet, M. et al. MC1R and PTCH gene polymorphism in French patients with basal cell carcinomas. J. Invest. Dermatol.126, 1510–1517 (2006). ArticleCASPubMed Google Scholar
Box, N. F. et al. Melanocortin-1 receptor genotype is a risk factor for basal and squamous cell carcinoma. J. Invest. Dermatol.116, 224–229 (2001). ArticleCASPubMed Google Scholar
Bastiaens, M. T. et al. Melanocortin-1 receptor gene variants determine the risk of nonmelanoma skin cancer independently of fair skin and red hair. Am. J. Hum. Genet.68, 884–894 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gerstenblith, M. R., Goldstein, A. M., Fargnoli, M. C., Peris, K. & Landi, M. T. Comprehensive evaluation of allele frequency differences of MC1R variants across populations. Hum. Mutat.28, 495–505 (2007). ArticleCASPubMed Google Scholar
Palmer, J. S. et al. Melanocortin-1 receptor polymorphisms and risk of melanoma: is the association explained solely by pigmentation phenotype? Am. J. Hum. Genet.66, 176–186 (2000). ArticleCASPubMed Google Scholar
Kennedy, C. et al. Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J. Invest. Dermatol.117, 294–300 (2001). ArticleCASPubMed Google Scholar
Slominski, A., Paus, R. & Wortsman, J. Can some melanotropins modulate keratinocyte proliferation? J. Invest. Dermatol.97, 747 (1991). ArticleCASPubMed Google Scholar
Wintzen, M., Yaar, M., Burbach, J. P. & Gilchrest, B. A. Proopiomelanocortin gene product regulation in keratinocytes. J. Invest. Dermatol.106, 673–678 (1996). ArticleCASPubMed Google Scholar
Corre, S. et al. UV-induced expression of key component of the tanning process, the POMC and MC1R genes, is dependent on the p-38-activated upstream stimulating factor-1 (USF-1). J. Biol. Chem.279, 51226–51233 (2004). ArticleCASPubMed Google Scholar
Cui, R. et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell128, 853–864 (2007). ArticleCASPubMed Google Scholar
Gudbjartsson, D. F. et al. ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma. Nature Genet.40, 886–891 (2008). This is a recent large-scale survey of genetic variants predisposing to BCC carcinogenesis. ArticleCASPubMed Google Scholar
Kraemer, K. H., Lee, M. M., Andrews, A. D. & Lambert, W. C. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. Arch. Dermatol.130, 1018–1021 (1994). ArticleCASPubMed Google Scholar
Berwick, M. & Vineis, P. Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J. Natl Cancer Inst.92, 874–897 (2000). ArticleCASPubMed Google Scholar
Wei, Q., Matanoski, G. M., Farmer, E. R., Hedayati, M. A. & Grossman, L. DNA repair capacity for ultraviolet light-induced damage is reduced in peripheral lymphocytes from patients with basal cell carcinoma. J. Invest. Dermatol.104, 933–936 (1995). ArticleCASPubMed Google Scholar
Dybdahl, M., Frentz, G., Vogel, U., Wallin, H. & Nexo, B. A. Low DNA repair is a risk factor in skin carcinogenesis: a study of basal cell carcinoma in psoriasis patients. Mutat. Res.433, 15–22 (1999). ArticleCASPubMed Google Scholar
Segerback, D., Strozyk, M., Snellman, E., & Hemminki, K. Repair of UV dimers in skin DNA of patients with basal cell carcinoma. Cancer Epidemiol. Biomarkers Prev.17, 2388–2392 (2008). ArticlePubMed Google Scholar
Han, S. et al. DNA repair gene XRCC3 polymorphisms and cancer risk: a meta-analysis of 48 case-control studies. Eur. J. Hum. Genet.14, 1136–1144 (2006). ArticleCASPubMed Google Scholar
Han, J., Colditz, G. A., Samson, L. D. & Hunter, D. J. Polymorphisms in DNA double-strand break repair genes and skin cancer risk. Cancer Res.64, 3009–3013 (2004). ArticleCASPubMed Google Scholar
Thirumaran, R. K. et al. Single nucleotide polymorphisms in DNA repair genes and basal cell carcinoma of skin. Carcinogenesis27, 1676–1681 (2006). ArticleCASPubMed Google Scholar
Jacobsen, N. R. et al. No association between the DNA repair gene XRCC3 T241M polymorphism and risk of skin cancer and breast cancer. Cancer Epidemiol. Biomarkers Prev.12, 584–585 (2003). CASPubMed Google Scholar
Festa, F. et al. Basal cell carcinoma and variants in genes coding for immune response, DNA repair, folate and iron metabolism. Mutat. Res.574, 105–111 (2005). ArticleCASPubMed Google Scholar
Chen, Y. C. et al. Genetic polymorphism in p53 codon 72 and skin cancer in southwestern Taiwan. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng.38, 201–211 (2003). ArticlePubMedCAS Google Scholar
Han, J., Cox, D. G., Colditz, G. A. & Hunter, D. J. The p53 codon 72 polymorphism, sunburns, and risk of skin cancer in US Caucasian women. Mol. Carcinog.45, 694–700 (2006). ArticleCASPubMed Google Scholar
Stefanaki, I. et al. p53 codon 72 Pro homozygosity increases the risk of cutaneous melanoma in individuals with dark skin complexion and among noncarriers of melanocortin 1 receptor red hair variants. Br. J. Dermatol.156, 357–362 (2007). ArticleCASPubMed Google Scholar
McGregor, J. M. et al. Relationship between p53 codon 72 polymorphism and susceptibility to sunburn and skin cancer. J. Invest. Dermatol.119, 84–90 (2002). ArticleCASPubMed Google Scholar
Wilkening, S. et al. No association between MDM2 SNP309 promoter polymorphism and basal cell carcinoma of the skin. Br. J. Dermatol.157, 375–377 (2007). ArticleCASPubMed Google Scholar
Asplund, A. et al. PTCH codon 1315 polymorphism and risk for nonmelanoma skin cancer. Br. J. Dermatol.152, 868–873 (2005). ArticleCASPubMed Google Scholar
Wakabayashi, Y., Mao, J. H., Brown, K., Girardi, M. & Balmain, A. Promotion of Hras-induced squamous carcinomas by a polymorphic variant of the Patched gene in FVB mice. Nature445, 761–765 (2007). ArticleCASPubMed Google Scholar
Yoon, J. W. et al. Gene expression profiling leads to identification of GLI1-binding elements in target genes and a role for multiple downstream pathways in GLI1-induced cell transformation. J. Biol. Chem.277, 5548–5555 (2002). ArticleCASPubMed Google Scholar
Howell, B. G. et al. Microarray profiles of human basal cell carcinoma: insights into tumor growth and behavior. J. Dermatol. Sci.39, 39–51 (2005). ArticleCASPubMed Google Scholar
O'Driscoll, L. et al. Investigation of the molecular profile of basal cell carcinoma using whole genome microarrays. Mol. Cancer5, 74 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Yu, M. et al. Superficial, nodular, and morpheiform basal-cell carcinomas exhibit distinct gene expression profiles. J. Invest. Dermatol.128, 1797–1805 (2008). ArticleCASPubMed Google Scholar
Asplund, A. et al. Expression profiling of microdissected cell populations selected from basal cells in normal epidermis and basal cell carcinoma. Br. J. Dermatol.158, 527–538 (2008). ArticleCASPubMed Google Scholar
Bigelow, R. L. et al. Transcriptional regulation of bcl-2 mediated by the sonic hedgehog signaling pathway through gli-1. J. Biol. Chem.279, 1197–1205 (2004). ArticleCASPubMed Google Scholar
Regl, G. et al. Activation of the BCL2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by GLI2. Cancer Res.64, 7724–7731 (2004). ArticleCASPubMed Google Scholar
Kump, E., Ji, J., Wernli, M., Hausermann, P. & Erb, P. Gli2 upregulates cFlip and renders basal cell carcinoma cells resistant to death ligand-mediated apoptosis. Oncogene27, 3856–3864 (2008). ArticleCASPubMed Google Scholar
Li, C. et al. IFNα induces Fas expression and apoptosis in hedgehog pathway activated BCC cells through inhibiting Ras–Erk signaling. Oncogene23, 1608–1617 (2004). ArticleCASPubMed Google Scholar
Athar, M. et al. Inhibition of smoothened signaling prevents ultraviolet B-induced basal cell carcinomas through regulation of Fas expression and apoptosis. Cancer Res.64, 7545–7552 (2004). ArticleCASPubMed Google Scholar
Leung, C. et al. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature428, 337–341 (2004). ArticleCASPubMed Google Scholar
Reinisch, C. M., Uthman, A., Erovic, B. M. & Pammer, J. Expression of BMI-1 in normal skin and inflammatory and neoplastic skin lesions. J. Cutan. Pathol.34, 174–180 (2007). ArticlePubMed Google Scholar
Kenney, A. M. & Rowitch, D. H. Sonic hedgehog promotes G1 cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol. Cell. Biol.20, 9055–9067 (2000). ArticleCASPubMedPubMed Central Google Scholar
Rao, G. et al. Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene23, 6156–6162 (2004). ArticleCASPubMed Google Scholar
Hahn, H. et al. Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J. Biol. Chem.15, 28341–28344 (2000). Article Google Scholar
Levitt, R. J., Zhao, Y., Blouin, M. J. & Pollak, M. The hedgehog pathway inhibitor cyclopamine increases levels of p27, and decreases both expression of IGF-II and activation of Akt in PC-3 prostate cancer cells. Cancer Lett.255, 300–306 (2007). ArticleCASPubMed Google Scholar
Lipinski, R. J. et al. Sonic hedgehog signaling regulates the expression of insulin-like growth factor binding protein-6 during fetal prostate development. Dev. Dyn.233, 829–836 (2005). ArticleCASPubMed Google Scholar
Allan, G. J. et al. Major components of the insulin-like growth factor axis are expressed early in chicken embryogenesis, with IGF binding protein (IGFBP)-5 expression subject to regulation by sonic hedgehog. Anat. Embryol. (Berl.)207, 73–84 (2003). ArticleCAS Google Scholar
Elia, D., Madhala, D., Ardon, E., Reshef, R. & Halevy, O. Sonic hedgehog promotes proliferation and differentiation of adult muscle cells: involvement of MAPK/ERK and PI3K/Akt pathways. Biochim. Biophys. Acta1773, 1438–1446 (2007). ArticleCASPubMed Google Scholar
Riobo, N. A., Lu, K., Ai, X., Haines, G. M. & Emerson, C. P., Jr. Phosphoinositide 3-kinase and Akt are essential for sonic hedgehog signaling. Proc. Natl Acad. Sci. USA103, 4505–4510 (2006). ArticleCASPubMedPubMed Central Google Scholar
Teh, M. T. et al. FOXM1 is a downstream target of Gli1 in basal cell carcinomas. Cancer Res.62, 4773–4780 (2002). CASPubMed Google Scholar
Yoshida, Y., Wang, I. C., Yoder, H. M., Davidson, N. O. & Costa, R. H. The forkhead box M1 transcription factor contributes to the development and growth of mouse colorectal cancer. Gastroenterology132, 1420–1431 (2007). ArticleCASPubMed Google Scholar
Dai, B. et al. Aberrant FoxM1B expression increases matrix metalloproteinase-2 transcription and enhances the invasion of glioma cells. Oncogene26, 6212–6219 (2007). ArticleCASPubMed Google Scholar
Liu, M. et al. FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res.66, 3593–3602 (2006). ArticleCASPubMed Google Scholar
Kalin, T. V. et al. Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res.66, 1712–1720 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kim, I. M. et al. The forkhead box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res.66, 2153–2161 (2006). ArticleCASPubMed Google Scholar
Tan, Y., Raychaudhuri, P. & Costa, R. H. Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes. Mol. Cell. Biol.27, 1007–1016 (2007). ArticleCASPubMed Google Scholar
Schuller, U. et al. Forkhead transcription factor FoxM1 regulates mitotic entry and prevents spindle defects in cerebellar granule neuron precursors. Mol. Cell. Biol.27, 8259–8270 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wonsey, D. R. & Follettie, M. T. Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res.65, 5181–5189 (2005). ArticleCASPubMed Google Scholar
Kalinichenko, V. V. et al. Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev.18, 830–850 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gusarova, G. A. et al. A cell-penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment. J. Clin. Invest.117, 99–111 (2007). ArticleCASPubMed Google Scholar
Radhakrishnan, S. K. et al. Identification of a chemical inhibitor of the oncogenic transcription factor forkhead box M1. Cancer Res.66, 9731–9735 (2006). ArticleCASPubMed Google Scholar
Eichberger, T. et al. FOXE1, a new transcriptional target of GLI2, is expressed in human epidermis and basal cell carcinoma. J. Invest. Dermatol.122, 1180–1187 (2004). ArticleCASPubMed Google Scholar
Brancaccio, A. et al. Requirement of the forkhead gene Foxe1, a target of sonic hedgehog signaling, in hair follicle morphogenesis. Hum. Mol. Genet.13, 2595–2606 (2004). ArticleCASPubMed Google Scholar
Yang, S. H. et al. Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/β-catenin signaling. Nature Genet.40, 1130–1135 (2008). ArticleCASPubMed Google Scholar
Nilsson, M. et al. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc. Natl Acad. Sci. USA97, 3438–3443 (2000). ArticleCASPubMedPubMed Central Google Scholar
Grachtchouk, M. et al. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nature Genet.24, 216–217 (2000). ArticleCASPubMed Google Scholar
Aszterbaum, M. et al. Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nature Med.5, 1285–1291 (1999). ArticleCASPubMed Google Scholar
Svard, J. et al. Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev. Cell10, 187–197 (2006). ArticlePubMedCAS Google Scholar
Wetmore, C., Eberhart, D. E. & Curran, T. Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res.61, 513–516 (2001). CASPubMed Google Scholar
Hadley, M. E. & Dorr, R. T. Melanocortin peptide therapeutics: historical milestones, clinical studies and commercialization. Peptides27, 921–930 (2006). ArticleCASPubMed Google Scholar
Gange, R. W., Blackett, A. D., Matzinger, E. A., Sutherland, B. M. & Kochevar, I. E. Comparative protection efficiency of UVA- and UVB-induced tans against erythema and formation of endonuclease-sensitive sites in DNA by UVB in human skin. J. Invest. Dermatol.85, 362–364 (1985). ArticleCASPubMed Google Scholar
Eller, M. S., Asarch, A. & Gilchrest, B. A. Photoprotection in human skin — a multifaceted SOS response. Photochem. Photobiol.84, 339–349 (2008). ArticleCASPubMed Google Scholar
Arad, S. et al. Topical thymidine dinucleotide treatment reduces development of ultraviolet-induced basal cell carcinoma in Ptch-1+/− mice. Am. J. Pathol.172, 1248–1255 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yarosh, D. B. & Klein, J. DNA repair enzymes in prevention of photocarcinogenesis. Photochem. Photobiol.63, 445–447 (1996). ArticleCASPubMed Google Scholar
Yarosh, D. et al. Effect of topically applied T4 endonuclease V in liposomes on skin cancer in xeroderma pigmentosum: a randomised study. Xeroderma Pigmentosum Study Group. Lancet357, 926–929 (2001). ArticleCASPubMed Google Scholar
Peck, G. L. et al. Treatment and prevention of basal cell carcinoma with oral isotretinoin. J. Am. Acad. Dermatol.19, 176–185 (1988). ArticleCASPubMed Google Scholar
Goldberg, L. H., Hsu, S. H. & Alcalay, J. Effectiveness of isotretinoin in preventing the appearance of basal cell carcinomas in basal cell nevus syndrome. J. Am. Acad. Dermatol.21, 144–145 (1989). ArticleCASPubMed Google Scholar
Kraemer, K. H., DiGiovanna, J. J., Moshell, A. N., Tarone, R. E. & Peck, G. L. Prevention of skin cancer in xeroderma pigmentosum with the use of oral isotretinoin. N. Engl. J. Med.318, 1633–1637 (1988). ArticleCASPubMed Google Scholar
Tangrea, J. A. et al. Long-term therapy with low-dose isotretinoin for prevention of basal cell carcinoma: a multicenter clinical trial. J. Natl Cancer Inst.84, 328–332 (1992). ArticleCASPubMed Google Scholar
Levine, N. et al. Trial of retinol and isotretinoin in skin cancer prevention: a randomized double-blind, controlled trial. Cancer Epidemiol. Biomarkers Prevention6, 957–961 (1997). CAS Google Scholar
Peris, K., Fargnoli, M. C. & Chimenti, S. Preliminary observations on the use of topical tazarotene to treat basal-cell carcinoma. N. Engl. J. Med.341, 1767–1768 (1999). ArticleCASPubMed Google Scholar
Duvic, M. et al. Tazarotene-induced gene 3 is suppressed in basal cell carcinomas and reversed in vivo by tazarotene application. J. Invest. Dermatol.121, 902–909 (2003). ArticleCASPubMed Google Scholar
Bianchi, L. et al. Topical treatment of basal cell carcinoma with tazarotene: a clinicopathological study on a large series of cases. Br. J. Dermatol.151, 148–156 (2004). ArticleCASPubMed Google Scholar
So, P. L. et al. Topical tazarotene chemoprevention reduces basal cell carcinoma number and size in Ptch1+/− mice exposed to ultraviolet or ionizing radiation. Cancer Res.64, 4385–4389 (2004). ArticleCASPubMed Google Scholar
So, P. L., Fujimoto, M. A. & Epstein, E. H. Jr. Pharmacologic retinoid signaling and physiologic retinoic acid receptor signaling inhibit basal cell carcinoma tumorigenesis. Mol. Cancer Ther.7, 1275–1284 (2008). ArticleCASPubMedPubMed Central Google Scholar
Black, H. S. et al. Evidence that a low-fat diet reduces the occurence of non-melanoma skin cancer. Int. J. Cancer62, 165–169 (1995). ArticleCASPubMed Google Scholar
Carneiro, B. A., Watkin, W. G., Mehta, U. K. & Brockstein, B. E. Metastatic basal cell carcinoma: complete response to chemotherapy and associated pure red cell aplasia. Cancer Invest.24, 396–400 (2006). ArticlePubMed Google Scholar
Binns, W., James, L. F., Shupe, J. L. & Everett, G. A congenital cyclopian-type malformation in lambs induced by maternal ingestion of a range plant, Veratrum californicum. Am. J. Vet. Res.24, 1164–1175 (1963). CASPubMed Google Scholar
Tabs, S. & Avci, O. Induction of the differentiation and apoptosis of tumor cells in vivo with efficiency and selectivity. Eur. J. Dermatol.14, 96–102 (2004). PubMed Google Scholar
Cooper, M. K., Porter, J. A., Young, K. E. & Beachy, P. A. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science280, 1603–1607 (1998). ArticleCASPubMed Google Scholar
Incardona, J. P., Gaffield, W., Kapur, R. P. & Roelink, H. The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development125, 3553–3562 (1998). CASPubMed Google Scholar
Chen, J. K., Taipale, J., Cooper, M. K. & Beachy, P. A. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev.16, 2743–2748 (2002). ArticleCASPubMedPubMed Central Google Scholar
Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature406, 1005–1009 (2000). ArticleCASPubMed Google Scholar
Van Hoff, D. D. et al. Efficacy data of GDC-0449, a systemic Hedgehog (Hh) pathway antagonist, in a first-in-human, first-in-class, phase I study with locally advanced, multifocal or metastatic basal cell carcinoma patients. Proc. 99th Annu. Meeting Am. Assoc. Cancer Res. abstract LB-138 (2008).
Palma, V. et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development132, 335–344 (2005). ArticleCASPubMed Google Scholar
Balordi, F. & Fishell, G. Mosaic removal of hedgehog signaling in the adult SVZ reveals that the residual wild-type stem cells have a limited capacity for self-renewal. J. Neurosci.27, 14248–14259 (2007). ArticleCASPubMedPubMed Central Google Scholar
Zhang, C. L., Zou, Y., He, W., Gage, F. H. & Evans, R. M. A role for adult TLX-positive neural stem cells in learning and behaviour. Nature451, 1004–1007 (2008). ArticleCASPubMed Google Scholar
Paladini, R. D., Saleh, J., Qian, C., Xu, G. X. & Rubin, L. L. Modulation of hair growth with small molecule agonists of the hedgehog signaling pathway. J. Invest. Dermatol.125, 638–646 (2005). ArticleCASPubMed Google Scholar
Miura, H., Kusakabe, Y. & Harada, S. Cell lineage and differentiation in taste buds. Arch. Histol. Cytol.69, 209–225 (2006). ArticleCASPubMed Google Scholar
Angot, E. et al. Chemoattractive activity of sonic hedgehog in the adult subventricular zone modulates the number of neural precursors reaching the olfactory bulb. Stem Cells 10 Jul 2008 [epub ahead of print].
Kimura, H., Ng, J. M. & Curran, T. Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell13, 249–260 (2008). ArticleCASPubMed Google Scholar
Arad, S., Konnikov, N., Goukassian, D. A. & Gilchrest, B. A. Quantification of inducible SOS-like photoprotective responses in human skin. J. Invest. Dermatol.127, 2629–2636 (2007). ArticleCASPubMed Google Scholar
Holick, M. F. et al. Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science210, 203–205 (1980). ArticleCASPubMed Google Scholar
MacLaughlin, J. & Holick, M. F. Aging decreases the capacity of human skin to produce vitamin D3. J. Clin. Invest.76, 1536–1538 (1985). ArticleCASPubMedPubMed Central Google Scholar
Vogt, A., Hebert, J., Hwang, J., Lu, Y. & Epstein, E. H. Anti-rejection drug treatment increases basal cell carcinoma burden in Ptch1+/− mice. J. Invest. Dermatol.124, 263–267 (2005). ArticleCASPubMed Google Scholar
Karhadkar, S. S. et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature431, 707–712 (2004). ArticleCASPubMed Google Scholar
Van Scott, E. J. & Reinertson, R. P. The modulating influence of stromal environment on epithelial cells studies in human autoransplants. J. Invest. Dermatol.36, 109–131 (1961). ArticleCASPubMed Google Scholar
Williams, T. et al. The oncogenic GLI (GLI1 and GLI2) transcription factors induce characteristics of cellular senescence in N/Tert-1 keratinocytes. J. Invest. Dermatol.127, s92 (2007). ArticleCAS Google Scholar
Gorlin, R. J. Nevoid basal-cell carcinoma syndrome. Medicine (Baltimore)66, 98–113 (1987). ArticleCAS Google Scholar
Evans, D. G. R., Farndon, P. A., Burnell, L. D., Gattamaneni, H. R. & Birch, J. M. The incidence of Gorlin syndrome in 173 consecutive cases of medulloblastoma. Br. J. Cancer64, 959–961 (1991). ArticleCASPubMedPubMed Central Google Scholar
Johnson, A. D., Hebert, A. A. & Esterly, N. B. Nevoid basal cell carcinoma syndrome: bilateral ovarian fibromas in a 3 1/2-year-old girl. J. Am. Acad. Dermatol.14, 371–374 (1986). References 165–167 review the clinical aspects of BCNS. ArticleCASPubMed Google Scholar
Kimonis, V. E. et al. Clinical manifestations in 105 persons with nevoid basal cell carcinoma syndrome. Am. J. Med. Genet.69, 299–308 (1997). ArticleCASPubMed Google Scholar
Miller, K. L. et al. XPA, haplotypes, and risk of basal and squamous cell carcinoma. Carcinogenesis27, 1670–1675 (2006). ArticleCASPubMed Google Scholar
Kang, S. Y. et al. Polymorphisms in the DNA repair gene XRCC1 associated with basal cell carcinoma and squamous cell carcinoma of the skin in a Korean population. Cancer Sci.98, 716–720 (2007). ArticleCASPubMed Google Scholar
Han, J., Hankinson, S. E., Colditz, G. A. & Hunter, D. J. Genetic variation in XRCC1, sun exposure, and risk of skin cancer. Br. J. Cancer91, 1604–1609 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dybdahl, M., Vogel, U., Frentz, G., Wallin, H. & Nexo, B. A. Polymorphisms in the DNA repair gene XPD: correlations with risk and age at onset of basal cell carcinoma. Cancer Epidemiol. Biomarkers Prev.8, 77–81 (1999). CASPubMed Google Scholar
Lovatt, T. et al. Polymorphism in the nuclear excision repair gene ERCC2/XPD: association between an exon 6–exon 10 haplotype and susceptibility to cutaneous basal cell carcinoma. Hum. Mutat.25, 353–359 (2005). ArticleCASPubMed Google Scholar
Vogel, U. et al. Effect of polymorphisms in XPD, RAI, ASE-1 and ERCC1 on the risk of basal cell carcinoma among Caucasians after age 50. Cancer Detect. Prev.29, 209–214 (2005). ArticleCASPubMed Google Scholar
Han, J., Colditz, G. A. & Hunter, D. J. Lack of associations of selected variants in genes involved in cell cycle and apoptosis with skin cancer risk. Cancer Epidemiol. Biomarkers Prev.15, 592–593 (2006). ArticlePubMed Google Scholar
Lin, Q. et al. Increased susceptibility to UV-induced skin carcinogenesis in polymerase eta-deficient mice. Cancer Res.66, 87–94 (2006). ArticleCASPubMed Google Scholar
Meeran, S. M., Mantena, S. K., Meleth, S., Elmets, C. A. & Katiyar, S. K. Interleukin-12-deficient mice are at greater risk of UV radiation-induced skin tumors and malignant transformation of papillomas to carcinomas. Mol. Cancer Ther.5, 825–832 (2006). ArticleCASPubMed Google Scholar
Schwarz, T. Photoimmunosuppression. Photodermatol. Photoimmunol. Photomed.18, 141–145 (2002). ArticleCASPubMed Google Scholar
Reynolds, N. J., Todd, C. & Angus, B. Overexpression of protein kinase C-α and -β isozymes by stromal dendritic cells in basal and squamous cell carcinoma. Br. J. Dermatol.136, 666–673 (1997). ArticleCASPubMed Google Scholar
Neill, G. W. et al. Loss of protein kinase Cα expression may enhance the tumorigenic potential of Gli1 in basal cell carcinoma. Cancer Res.63, 4692–4697 (2003). CASPubMed Google Scholar
Riobo, N. A., Haines, G. M. & Emerson, C. P. Jr. Protein kinase C-δ and mitogen-activated protein/extracellular signal-regulated kinase-1 control GLI activation in hedgehog signaling. Cancer Res.66, 839–845 (2006). ArticleCASPubMed Google Scholar
Lauth, M., Bergstrom, A. & Toftgard, R. Phorbol esters inhibit the Hedgehog signalling pathway downstream of Suppressor of Fused, but upstream of Gli. Oncogene26, 5163–5168 (2007). ArticleCASPubMed Google Scholar
Tang, X. et al. Ornithine decarboxylase is a target for chemoprevention of basal and squamous cell carcinomas in Ptch1+/− mice. J. Clin. Invest.113, 867–875 (2004). ArticleCASPubMedPubMed Central Google Scholar
Thyberg, J. & Fredholm, B. B. Induction of ornithine decarboxylase activity and putrescine synthesis in arterial smooth muscle cells stimulated with platelet-derived growth factor. Exp. Cell Res.170, 160–169 (1987). ArticleCASPubMed Google Scholar
Kasper, M. et al. Selective modulation of Hedgehog/GLI target gene expression by epidermal growth factor signaling in human keratinocytes. Mol. Cell. Biol.26, 6283–6298 (2006). ArticleCASPubMedPubMed Central Google Scholar
Mimeault, M. et al. Combined targeting of epidermal growth factor receptor and hedgehog signaling by gefitinib and cyclopamine cooperatively improves the cytotoxic effects of docetaxel on metastatic prostate cancer cells. Mol. Cancer Ther.6, 967–978 (2007). ArticleCASPubMed Google Scholar
Ikeuchi, T., Urano, Y., Fukuhara, K., Nakanishi, H. & Arase, S. Light microscopic autoradiographical analysis of [125I]epidermal growth factor binding in basal cell epithelioma and squamous cell carcinoma of the skin. J. Dermatol.20, 219–225 (1993). ArticleCASPubMed Google Scholar
Mimeault, M. et al. Cytotoxic effects induced by a combination of cyclopamine and gefitinib, the selective hedgehog and epidermal growth factor receptor signaling inhibitors, in prostate cancer cells. Int. J. Cancer118, 1022–1031 (2006). ArticleCASPubMed Google Scholar
Hu, W. G., Liu, T., Xiong, J. X. & Wang, C. Y. Blockade of sonic hedgehog signal pathway enhances antiproliferative effect of EGFR inhibitor in pancreatic cancer cells. Acta Pharmacol. Sin.28, 1224–1230 (2007). ArticleCASPubMed Google Scholar
Neill, G. W. et al. GLI1 repression of ERK activity correlates with colony formation and impaired migration in human epidermal keratinocytes. Carcinogenesis29, 738–746 (2008). ArticleCASPubMed Google Scholar
Dennler, S. et al. Induction of sonic hedgehog mediators by transforming growth factor-β: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res.67, 6981–6986 (2007). ArticleCASPubMed Google Scholar
Stamp, G. W. et al. Transforming growth factor-β distribution in basal cell carcinomas: relationship to proliferation index. Br. J. Dermatol.129, 57–64 (1993). ArticleCASPubMed Google Scholar
Gambichler, T. et al. Increased expression of TGF-β/Smad proteins in basal cell carcinoma. Eur. J. Med. Res.12, 509–514 (2007). CASPubMed Google Scholar
Verhaegh, M. E., Arends, J. W., Majoie, I. M., Hoekzema, R. & Neumann, H. A. Transforming growth factor-β and bcl-2 distribution patterns distinguish trichoepithelioma from basal cell carcinoma. Dermatol. Surg.23, 695–700 (1997). CASPubMed Google Scholar
Lange, D. et al. Expression of TGF-β related Smad proteins in human epithelial skin tumors. Int. J. Oncol.14, 1049–1056 (1999). CASPubMed Google Scholar
Sneddon, J. B. et al. Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc. Natl Acad. Sci. USA103, 14842–14847 (2006). ArticleCASPubMedPubMed Central Google Scholar
Thelu, J., Rossio, P. & Favier, B. Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol.2, 7 (2002). ArticlePubMedPubMed Central Google Scholar
Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nature Genet.33, 416–421 (2003). ArticleCASPubMed Google Scholar
Christenson, L. J. et al. Incidence of basal cell and squamous cell carcinomas in a population younger than 40 years. JAMA294, 681–690 (2005). ArticleCASPubMed Google Scholar