Crosstalk of Notch with p53 and p63 in cancer growth control (original) (raw)
Stelling, J., Sauer, U., Szallasi, Z., Doyle, F. J. & Doyle, J. Robustness of cellular functions. Cell118, 675–685 (2004). CASPubMed Google Scholar
Alon, U. Network motifs: theory and experimental approaches. Nature Rev. Genet.8, 450–461 (2007). CASPubMed Google Scholar
Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell Biol.7, 678–689 (2006). ArticleCAS Google Scholar
Hurlbut, G. D., Kankel, M. W., Lake, R. J. & Artavanis-Tsakonas, S. Crossing paths with Notch in the hyper-network. Curr. Opin. Cell Biol.19, 166–175 (2007). CASPubMed Google Scholar
Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell137, 216–233 (2009). CASPubMedPubMed Central Google Scholar
Olivier, M. et al. Recent advances in p53 research: an interdisciplinary perspective. Cancer Gene Ther.16, 1–12 (2009). CASPubMed Google Scholar
Riley, T., Sontag, E., Chen, P. & Levine, A. Transcriptional control of human p53-regulated genes. Nature Rev. Mol. Cell Biol.9, 402–412 (2008). CAS Google Scholar
Stiewe, T. The p53 family in differentiation and tumorigenesis. Nature Rev. Cancer7, 165–168 (2007). CAS Google Scholar
Barolo, S. & Posakony, J. W. Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev.16, 1167–1181 (2002). CASPubMed Google Scholar
Demarest, R. M., Ratti, F. & Capobianco, A. J. It's T-ALL about Notch. Oncogene27, 5082–5091 (2008). CASPubMed Google Scholar
Roy, M., Pear, W. S. & Aster, J. C. The multifaceted role of Notch in cancer. Curr. Opin. Genet. Dev.17, 52–59 (2007). CASPubMed Google Scholar
Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature356, 215–221 (1992). CASPubMed Google Scholar
Armstrong, J. F., Kaufman, M. H., Harrison, D. J. & Clarke, A. R. High-frequency developmental abnormalities in p53-deficient mice. Curr. Biol.5, 931–936 (1995). CASPubMed Google Scholar
Sah, V. P. et al. A subset of p53-deficient embryos exhibit exencephaly. Nature Genet.10, 175–180 (1995). CASPubMed Google Scholar
Saifudeen, Z., Dipp, S. & El-Dahr, S. S. A role for p53 in terminal epithelial cell differentiation. J. Clin. Invest.109, 1021–1030 (2002). CASPubMedPubMed Central Google Scholar
Jerry, D. J., Tao, L. & Yan, H. Regulation of cancer stem cells by p53. Breast Cancer Res.10, 304 (2008). PubMedPubMed Central Google Scholar
Zhang, M. et al. Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res.68, 4674–4682 (2008). CASPubMedPubMed Central Google Scholar
Zheng, H. et al. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature455, 1129–1133 (2008). CASPubMedPubMed Central Google Scholar
Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature398, 708–713 (1999). CASPubMed Google Scholar
Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature398, 714–718 (1999). CASPubMed Google Scholar
Yang, A. et al. p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature404, 99–103 (2000). CASPubMed Google Scholar
Hooper, C. et al. TAp73 isoforms antagonize Notch signalling in SH-SY5Y neuroblastomas and in primary neurones. J. Neurochem.99, 989–999 (2006). CASPubMed Google Scholar
Nguyen, B. C. et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev.20, 1028–1042 (2006). CASPubMedPubMed Central Google Scholar
Osada, M. et al. Differential recognition of response elements determines target gene specificity for p53 and p63. Mol. Cell. Biol.25, 6077–6089 (2005). CASPubMedPubMed Central Google Scholar
Rocco, J. W., Leong, C. O., Kuperwasser, N., DeYoung, M. P. & Ellisen, L. W. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell9, 45–56 (2006). CASPubMed Google Scholar
Westfall, M. D., Mays, D. J., Sniezek, J. C. & Pietenpol, J. A. The ΔNp63 α phosphoprotein binds the p21 and 14-3-3σ promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol. Cell. Biol.23, 2264–2276 (2003). CASPubMedPubMed Central Google Scholar
Wu, G. et al. ΔNp63α and TAp63α regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res.63, 2351–2357 (2003). CASPubMed Google Scholar
Yang, A. et al. p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell2, 305–316 (1998). CASPubMed Google Scholar
Toledo, F. & Wahl, G. M. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nature Rev. Cancer6, 909–923 (2006). CAS Google Scholar
Boggs, K. & Reisman, D. C/EBPβ participates in regulating transcription of the p53 gene in response to mitogen stimulation. J. Biol. Chem.282, 7982–7990 (2007). CASPubMed Google Scholar
Bruno, T. et al. Che-1 phosphorylation by ATM/ATR and Chk2 kinases activates p53 transcription and the G2/M checkpoint. Cancer Cell10, 473–486 (2006). CASPubMed Google Scholar
Kolev, V. et al. EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer. Nature Cell Biol.10, 902–911 (2008). CASPubMed Google Scholar
Phan, R. T. & Dalla-Favera, R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature432, 635–639 (2004). CASPubMed Google Scholar
Reisman, D. & Loging, W. T. Transcriptional regulation of the p53 tumor suppressor gene. Semin. Cancer Biol.8, 317–324 (1998). CASPubMed Google Scholar
Rowland, B. D., Bernards, R. & Peeper, D. S. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nature Cell Biol.7, 1074–1082 (2005). CASPubMed Google Scholar
Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science306, 269–271 (2004). CASPubMed Google Scholar
Beverly, L. J., Felsher, D. W. & Capobianco, A. J. Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression. Cancer Res.65, 7159–7168 (2005). CASPubMed Google Scholar
Sulong, S. et al. A comprehensive analysis of the CDKN2A gene in childhood acute lymphoblastic leukemia reveals genomic deletion, copy number neutral loss of heterozygosity, and association with specific cytogenetic subgroups. Blood113, 100–107 (2009). CASPubMed Google Scholar
Mungamuri, S. K., Yang, X., Thor, A. D. & Somasundaram, K. Survival signaling by Notch1: mammalian target of rapamycin (mTOR)-dependent inhibition of p53. Cancer Res.66, 4715–4724 (2006). CASPubMed Google Scholar
Nair, P., Somasundaram, K. & Krishna, S. Activated Notch1 inhibits p53-induced apoptosis and sustains transformation by human papillomavirus type 16 E6 and E7 oncogenes through a PI3K-PKB/Akt-dependent pathway. J. Virol.77, 7106–7112 (2003). CASPubMedPubMed Central Google Scholar
Palomero, T., Dominguez, M. & Ferrando, A. A. The role of the PTEN/AKT pathway in NOTCH1-induced leukemia. Cell Cycle7, 965–970 (2008). CASPubMed Google Scholar
Guo, W. et al. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature453, 529–533 (2008). CASPubMedPubMed Central Google Scholar
Uren, A. G. et al. Large-scale mutagenesis in p19(ARF)- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell133, 727–741 (2008). CASPubMedPubMed Central Google Scholar
Palomero, T. et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nature Med.13, 1203–1210 (2007). CASPubMed Google Scholar
Kim, S. B. et al. Activated Notch1 interacts with p53 to inhibit its phosphorylation and transactivation. Cell Death Differ.14, 982–991 (2007). PubMed Google Scholar
Balint, K. et al. Activation of Notch1 signaling is required for β-catenin-mediated human primary melanoma progression. J. Clin. Invest.115, 3166–3176 (2005). CASPubMedPubMed Central Google Scholar
Politi, K., Feirt, N. & Kitajewski, J. Notch in mammary gland development and breast cancer. Semin. Cancer Biol.14, 341–347 (2004). CASPubMed Google Scholar
Purow, B. W. et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res.65, 2353–2363 (2005). CASPubMed Google Scholar
Weng, A. P. et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev.20, 2096–2109 (2006). CASPubMedPubMed Central Google Scholar
Ronchini, C. & Capobianco, A. J. Induction of cyclin D1 transcription and CDK2 activity by Notchic: implication for cell cycle disruption in transformation by Notchic. Mol. Cell. Biol.21, 5925–5934 (2001). CASPubMedPubMed Central Google Scholar
Lowell, S., Jones, P., Le Roux, I., Dunne, J. & Watt, F. M. Stimulation of human epidermal differentiation by δ-notch signalling at the boundaries of stem-cell clusters. Curr. Biol.10, 491–500 (2000). CASPubMed Google Scholar
Nickoloff, B. J. et al. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-κB and PPARγ. Cell Death Differ.9, 842–855 (2002). CASPubMed Google Scholar
Rangarajan, A. et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J.20, 3427–3436 (2001). CASPubMedPubMed Central Google Scholar
Estrach, S., Cordes, R., Hozumi, K., Gossler, A. & Watt, F. M. Role of the Notch ligand Delta1 in embryonic and adult mouse epidermis. J. Invest. Dermatol.128, 825–832 (2008). CASPubMed Google Scholar
Lefort, K. et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKα kinases. Genes Dev.21, 562–577 (2007). CASPubMedPubMed Central Google Scholar
Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nature Genet.33, 416–421 (2003). CASPubMed Google Scholar
Proweller, A. et al. Impaired notch signaling promotes de novo squamous cell carcinoma formation. Cancer Res.66, 7438–7444 (2006). CASPubMed Google Scholar
zur Hausen, H. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J. Natl Cancer Inst.92, 690–698 (2000). CASPubMed Google Scholar
Daniel, B., Rangarajan, A., Mukherjee, G., Vallikad, E. & Krishna, S. The link between integration and expression of human papillomavirus type 16 genomes and cellular changes in the evolution of cervical intraepithelial neoplastic lesions. J. Gen. Virol.78, 1095–1101 (1997). CASPubMed Google Scholar
Zagouras, P., Stifani, S., Blaumueller, C. M., Carcangiu, M. L. & Artavanis-Tsakonas, S. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc. Natl Acad. Sci. USA92, 6414–6418 (1995). CASPubMedPubMed Central Google Scholar
Talora, C., Sgroi, D. C., Crum, C. P. & Dotto, G. P. Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev.16, 2252–2263 (2002). CASPubMedPubMed Central Google Scholar
Wang, L. et al. Overexpressed active Notch1 induces cell growth arrest of HeLa cervical carcinoma cells. Int. J. Gynecol. Cancer17, 1283–1292 (2007). CASPubMed Google Scholar
Yao, J., Duan, L., Fan, M., Yuan, J. & Wu, X. Notch1 induces cell cycle arrest and apoptosis in human cervical cancer cells: involvement of nuclear factor kappa B inhibition. Int. J. Gynecol. Cancer17, 502–510 (2007). CASPubMed Google Scholar
Tamura, K. et al. Stress response gene ATF3 is a target of c-myc in serum-induced cell proliferation. EMBO J.24, 2590–2601 (2005). CASPubMedPubMed Central Google Scholar
Boggs, K., Henderson, B. & Reisman, D. RBP-Jκ binds to and represses transcription of the p53 tumor suppressor gene. Cell Biol. Int.33, 318–324 (2009). CASPubMed Google Scholar
Riggi, N. & Stamenkovic, I. The biology of Ewing sarcoma. Cancer Lett.254, 1–10 (2007). CASPubMed Google Scholar
Iso, T., Kedes, L. & Hamamori, Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J. Cell Physiol.194, 237–255 (2003). CASPubMed Google Scholar
Huang, Q. et al. Identification of p53 regulators by genome-wide functional analysis. Proc. Natl Acad. Sci. USA101, 3456–3461 (2004). CASPubMedPubMed Central Google Scholar
Small, D. et al. Notch activation suppresses fibroblast growth factor-dependent cellular transformation. J. Biol. Chem.278, 16405–16413 (2003). CASPubMed Google Scholar
Ishikawa, Y., Onoyama, I., Nakayama, K. I. & Nakayama, K. Notch-dependent cell cycle arrest and apoptosis in mouse embryonic fibroblasts lacking Fbxw7. Oncogene27, 6164–6174 (2008). CASPubMed Google Scholar
Qi, R. et al. Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res.63, 8323–8329 (2003). CASPubMed Google Scholar
Duan, L., Yao, J., Wu, X. & Fan, M. Growth suppression induced by Notch1 activation involves Wnt-β-catenin down-regulation in human tongue carcinoma cells. Biol. Cell98, 479–490 (2006). CASPubMed Google Scholar
Henning, K. et al. Notch1 activation reduces proliferation in the multipotent hematopoietic progenitor cell line FDCP-mix through a p53-dependent pathway but Notch1 effects on myeloid and erythroid differentiation are independent of p53. Cell Death Differ.15, 398–407 (2008). CASPubMed Google Scholar
Yang, X. et al. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev. Biol.269, 81–94 (2004). CASPubMed Google Scholar
Niranjan, T. et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nature Med.14, 290–298 (2008). CASPubMed Google Scholar
Purow, B. W. et al. Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis29, 918–925 (2008). CASPubMedPubMed Central Google Scholar
Deb, S. P., Munoz, R. M., Brown, D. R., Subler, M. A. & Deb, S. Wild-type human p53 activates the human epidermal growth factor receptor promoter. Oncogene9, 1341–1349 (1994). CASPubMed Google Scholar
Ludes-Meyers, J. H. et al. Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol. Cell. Biol.16, 6009–6019 (1996). CASPubMedPubMed Central Google Scholar
Sasaki, Y. et al. The p53 family member genes are involved in the Notch signal pathway. J. Biol. Chem.277, 719–724 (2002). CASPubMed Google Scholar
Das, H. K. Transcriptional regulation of the presenilin-1 gene: implication in Alzheimer's disease. Front. Biosci.13, 822–832 (2008). CAS Google Scholar
Pastorcic, M. & Das, H. K. Regulation of transcription of the human presenilin-1 gene by ets transcription factors and the p53 protooncogene. J. Biol. Chem.275, 34938–34945 (2000). CASPubMed Google Scholar
Amson, R. et al. Behavioral alterations associated with apoptosis and down-regulation of presenilin 1 in the brains of p53-deficient mice. Proc. Natl Acad. Sci. USA97, 5346–5350 (2000). CASPubMedPubMed Central Google Scholar
Roperch, J. P. et al. Inhibition of presenilin 1 expression is promoted by p53 and p21WAF-1 and results in apoptosis and tumor suppression. Nature Med.4, 835–838 (1998). CASPubMed Google Scholar
Devgan, V., Mammucari, C., Millar, S. E., Brisken, C. & Dotto, G. P. p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev.19, 1485–1495 (2005). CASPubMedPubMed Central Google Scholar
Lohr, K., Moritz, C., Contente, A. & Dobbelstein, M. p21/CDKN1A mediates negative regulation of transcription by p53. J. Biol. Chem.278, 32507–32516 (2003). PubMed Google Scholar
Laws, A. M. & Osborne, B. A. p53 regulates thymic Notch1 activation. Eur. J. Immunol.34, 726–734 (2004). CASPubMed Google Scholar
Thelu, J., Rossio, P. & Favier, B. Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol.2, 7 (2002). PubMedPubMed Central Google Scholar
Mandinova, A. et al. The FoxO3a gene is a key negative target of canonical Notch signalling in the keratinocyte UVB response. EMBO J.27, 1243–1254 (2008). CASPubMedPubMed Central Google Scholar
Yugawa, T. et al. Regulation of Notch1 gene expression by p53 in epithelial cells. Mol. Cell. Biol.27, 3732–3742 (2007). CASPubMedPubMed Central Google Scholar
Armstrong, B. K. & Kricker, A. The epidemiology of UV induced skin cancer. J. Photochem. Photobiol. B63, 8–18 (2001). CASPubMed Google Scholar
de Gruijl, F. R. Skin cancer and solar UV radiation. Eur. J. Cancer35, 2003–2009 (1999). CASPubMed Google Scholar
Lee, J. H. et al. Acute effects of UVB radiation on the proliferation and differentiation of keratinocytes. Photodermatol. Photoimmunol. Photomed.18, 253–261 (2002). CASPubMed Google Scholar
Alimirah, F., Panchanathan, R., Davis, F. J., Chen, J. & Choubey, D. Restoration of p53 expression in human cancer cell lines upregulates the expression of Notch1: implications for cancer cell fate determination after genotoxic stress. Neoplasia9, 427–434 (2007). CASPubMedPubMed Central Google Scholar
Secchiero, P. et al. Nutlin-3 upregulates the expression of Notch1 in both myeloid and lymphoid leukemic cells, as part of a negative feed-back anti-apoptotic mechanism. Blood113, 4300–4308 (2009). CASPubMed Google Scholar
Wei, C. L. et al. A global map of p53 transcription-factor binding sites in the human genome. Cell124, 207–219 (2006). CASPubMed Google Scholar
Lefort, K. & Dotto, G. P. Notch signaling in the integrated control of keratinocyte growth/differentiation and tumor suppression. Semin. Cancer Biol.14, 374–386 (2004). CASPubMed Google Scholar
Koster, M. I. & Roop, D. R. The role of p63 in development and differentiation of the epidermis. J. Dermatol. Sci.34, 3–9 (2004). CASPubMed Google Scholar
McKeon, F. p63 and the epithelial stem cell: more than status quo? Genes Dev.18, 465–469 (2004). CASPubMed Google Scholar
Westfall, M. D. & Pietenpol, J. A. p63: molecular complexity in development and cancer. Carcinogenesis25, 857–864 (2004). CASPubMed Google Scholar
Levrero, M. et al. The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J. Cell Sci.113, 1661–1670 (2000). CASPubMed Google Scholar
Ross, D. A. & Kadesch, T. Consequences of Notch-mediated induction of Jagged1. Exp. Cell Res.296, 173–182 (2004). CASPubMed Google Scholar
Thanos, D. & Maniatis, T. Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell83, 1091–1100 (1995). CASPubMed Google Scholar
Perera, R. J. et al. Defining the transcriptome of accelerated and replicatively senescent keratinocytes reveals links to differentiation, interferon signaling, and Notch related pathways. J. Cell Biochem.98, 394–408 (2006). CASPubMed Google Scholar
Zhang, L. & Pagano, J. S. Structure and function of IRF-7. J. Interferon Cytokine Res.22, 95–101 (2002). PubMed Google Scholar
Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature434, 772–777 (2005). CASPubMed Google Scholar
Servant, M. J., Tenoever, B. & Lin, R. Overlapping and distinct mechanisms regulating IRF-3 and IRF-7 function. J. Interferon Cytokine Res.22, 49–58 (2002). CASPubMed Google Scholar
Seitz, C. S., Lin, Q., Deng, H. & Khavari, P. A. Alterations in NF-κB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-κB. Proc. Natl Acad. Sci. USA95, 2307–2312 (1998). CASPubMedPubMed Central Google Scholar
van Hogerlinden, M., Rozell, B. L., Ahrlund-Richter, L. & Toftgard, R. Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-κB signaling. Cancer Res.59, 3299–3303 (1999). CASPubMed Google Scholar
Lena, A. M. et al. miR-203 represses 'stemness' by repressing ΔNp63. Cell Death Differ.15, 1187–1195 (2008). CASPubMed Google Scholar
Yi, R., Poy, M. N., Stoffel, M. & Fuchs, E. A skin microRNA promotes differentiation by repressing 'stemness'. Nature452, 225–229 (2008). CASPubMedPubMed Central Google Scholar
Thatcher, E. J., Flynt, A. S., Li, N., Patton, J. R. & Patton, J. G. miRNA expression analysis during normal zebrafish development and following inhibition of the Hedgehog and Notch signaling pathways. Dev. Dyn.236, 2172–2180 (2007). CASPubMed Google Scholar
Yoo, A. S. & Greenwald, I. LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans. Science310, 1330–1333 (2005). CASPubMedPubMed Central Google Scholar
Laurikkala, J. et al. p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development133, 1553–1563 (2006). CASPubMed Google Scholar
Okuyama, R. et al. p53 homologue, p51/p63, maintains the immaturity of keratinocyte stem cells by inhibiting Notch1 activity. Oncogene26, 4478–4488 (2007). CASPubMed Google Scholar
Truong, A. B. & Khavari, P. A. Control of keratinocyte proliferation and differentiation by p63. Cell Cycle6, 295–299 (2007). CASPubMed Google Scholar
Moriyama, M. et al. Multiple roles of Notch signaling in the regulation of epidermal development. Dev. Cell14, 594–604 (2008). CASPubMed Google Scholar
Candi, E. et al. ΔNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc. Natl Acad. Sci. USA104, 11999–12004 (2007). CASPubMedPubMed Central Google Scholar
Wu, L. et al. MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nature Genet.26, 484–489 (2000). CASPubMed Google Scholar
Petcherski, A. G. & Kimble, J. Mastermind is a putative activator for Notch. Curr. Biol.10, R471–R473 (2000). CASPubMed Google Scholar
Oswald, F. et al. p300 acts as a transcriptional coactivator for mammalian Notch-1. Mol. Cell. Biol.21, 7761–7774 (2001). CASPubMedPubMed Central Google Scholar
Fryer, C. J., Lamar, E., Turbachova, I., Kintner, C. & Jones, K. A. Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. Genes Dev.16, 1397–1411 (2002). CASPubMedPubMed Central Google Scholar
Wilson, J. J. & Kovall, R. A. Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell124, 985–996 (2006). CASPubMed Google Scholar
Nam, Y., Sliz, P., Song, L., Aster, J. C. & Blacklow, S. C. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell124, 973–983 (2006). CASPubMed Google Scholar
McElhinny, A. S., Li, J. L. & Wu, L. Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways. Oncogene27, 5138–5147 (2008). CASPubMed Google Scholar
Zhao, Y. et al. The notch regulator MAML1 interacts with p53 and functions as a coactivator. J. Biol. Chem.282, 11969–11981 (2007). CASPubMed Google Scholar
Saint Just Ribeiro, M., Hansson, M. L. & Wallberg, A. E. A proline repeat domain in the Notch co-activator MAML1 is important for the p300-mediated acetylation of MAML1. Biochem. J.404, 289–298 (2007). CASPubMedPubMed Central Google Scholar
Yogosawa, S., Miyauchi, Y., Honda, R., Tanaka, H. & Yasuda, H. Mammalian Numb is a target protein of Mdm2, ubiquitin ligase. Biochem. Biophys. Res. Commun.302, 869–872 (2003). CASPubMed Google Scholar
Colaluca, I. N. et al. NUMB controls p53 tumour suppressor activity. Nature451, 76–80 (2008). CASPubMed Google Scholar
Peus, D., Hamacher, L. & Pittelkow, M. R. EGF-receptor tyrosine kinase inhibition induces keratinocyte growth arrest and terminal differentiation. J. Invest. Dermatol.109, 751–756 (1997). CASPubMed Google Scholar
Kalyankrishna, S. & Grandis, J. R. Epidermal growth factor receptor biology in head and neck cancer. J. Clin. Oncol.24, 2666–2672 (2006). CASPubMed Google Scholar
Lacouture, M. E. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nature Rev. Cancer6, 803–812 (2006). CAS Google Scholar
Osipo, C. et al. ErbB-2 inhibition activates Notch-1 and sensitizes breast cancer cells to a γ-secretase inhibitor. Oncogene27, 5019–5032 (2008). CASPubMed Google Scholar
Piccolo, S. p53 regulation orchestrates the TGF-β response. Cell133, 767–769 (2008). CASPubMed Google Scholar
Blokzijl, A. et al. Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J. Cell Biol.163, 723–728 (2003). CASPubMedPubMed Central Google Scholar
Itoh, F. et al. Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J.23, 541–551 (2004). CASPubMedPubMed Central Google Scholar
Zavadil, J., Cermak, L., Soto-Nieves, N. & Bottinger, E. P. Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J.23, 1155–1165 (2004). CASPubMedPubMed Central Google Scholar
Niimi, H., Pardali, K., Vanlandewijck, M., Heldin, C. H. & Moustakas, A. Notch signaling is necessary for epithelial growth arrest by TGF-β. J. Cell Biol.176, 695–707 (2007). CASPubMedPubMed Central Google Scholar
Webster, G. A. & Perkins, N. D. Transcriptional cross talk between NF-κB and p53. Mol. Cell. Biol.19, 3485–3495 (1999). CASPubMedPubMed Central Google Scholar
Pei, X. H., Nakanishi, Y., Takayama, K., Bai, F. & Hara, N. Benzo[_a_]pyrene activates the human p53 gene through induction of nuclear factor κB activity. J. Biol. Chem.274, 35240–35246 (1999). CASPubMed Google Scholar
Lee, H. O., Lee, J. H., Kim, T. Y. & Lee, H. Regulation of ΔNp63α by tumor necrosis factor-α in epithelial homeostasis. FEBS J.274, 6511–6522 (2007). CASPubMed Google Scholar
Bash, J. et al. Rel/NF-κB can trigger the Notch signaling pathway by inducing the expression of Jagged1, a ligand for Notch receptors. EMBO J.18, 2803–2811 (1999). CASPubMedPubMed Central Google Scholar
Osipo, C., Golde, T. E., Osborne, B. A. & Miele, L. A. Off the beaten pathway: the complex cross talk between Notch and NF-κB. Lab. Invest.88, 11–17 (2008). CASPubMed Google Scholar
Shamloula, H. K. et al. rugose (rg), a Drosophila A kinase anchor protein, is required for retinal pattern formation and interacts genetically with multiple signaling pathways. Genetics161, 693–710 (2002). CASPubMedPubMed Central Google Scholar
Shmelkov, S. V. et al. CD133 expression is not restricted to stem cells, and both CD133+ and CD133− metastatic colon cancer cells initiate tumors. J. Clin. Invest.118, 2111–2120 (2008). CASPubMedPubMed Central Google Scholar
Jones, P. H., Simons, B. D. & Watt, F. M. Sic transit gloria: farewell to the epidermal transit amplifying cell? Cell Stem Cell1, 371–381 (2007). CASPubMed Google Scholar
Malhotra, S. & Kincade, P. W. Wnt-related molecules and signaling pathway equilibrium in hematopoiesis. Cell Stem Cell4, 27–36 (2009). CASPubMedPubMed Central Google Scholar
Okuyama, R., LeFort, K. & Dotto, G. P. A dynamic model of keratinocyte stem cell renewal and differentiation: role of the p21WAF1/Cip1 and Notch1 signaling pathways. J. Investig. Dermatol. Symp. Proc.9, 248–252 (2004). CASPubMed Google Scholar
Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature453, 544–547 (2008). CASPubMedPubMed Central Google Scholar
Lahav, G. The strength of indecisiveness: oscillatory behavior for better cell fate determination. Sci. STKE2004, pe55 (2004). PubMed Google Scholar
Lahav, G. Oscillations by the p53-Mdm2 feedback loop. Adv. Exp. Med. Biol.641, 28–38 (2008). CASPubMed Google Scholar
Giudicelli, F. & Lewis, J. The vertebrate segmentation clock. Curr. Opin. Genet. Dev.14, 407–414 (2004). CASPubMed Google Scholar
Lewis, J. From signals to patterns: space, time, and mathematics in developmental biology. Science322, 399–403 (2008). CASPubMed Google Scholar