Shared and separate functions of polo-like kinases and aurora kinases in cancer (original) (raw)
Jordan, M. A. & Wilson, L. Microtubules as a target for anticancer drugs. Nature Rev. Cancer4, 253–265 (2004). ArticleCAS Google Scholar
Sudakin, V. & Yen, T. J. Targeting mitosis for anti-cancer therapy. BioDrugs21, 225–233 (2007). ArticleCASPubMed Google Scholar
Vader, G. & Lens, S. M. The Aurora kinase family in cell division and cancer. Biochim. Biophys. Acta1786, 60–72 (2008). CASPubMed Google Scholar
Barr, A. R. & Gergely, F. Aurora-A: the maker and breaker of spindle poles. J. Cell Sci.120, 2987–2996 (2007). ArticleCASPubMed Google Scholar
Marumoto, T. et al. Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J. Biol. Chem.278, 51786–51795 (2003). ArticleCASPubMed Google Scholar
Hoar, K. et al. MLN8054, a small-molecule inhibitor of Aurora A, causes spindle pole and chromosome congression defects leading to aneuploidy. Mol. Cell Biol.27, 4513–4525 (2007). ArticleCASPubMedPubMed Central Google Scholar
Manfredi, M. G. et al. Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc. Natl Acad. Sci. USA104, 4106–4111 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ruchaud, S., Carmena, M. & Earnshaw, W. C. Chromosomal passengers: conducting cell division. Nature Rev. Mol. Cell Biol.8, 798–812 (2007). ArticleCAS Google Scholar
Vader, G., Medema, R. H. & Lens, S. M. The chromosomal passenger complex: guiding Aurora-B through mitosis. J. Cell Biol.173, 833–837 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kelly, A. E. et al. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase aurora, B. Science330, 235–239 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yamagishi, Y., Honda, T., Tanno, Y. & Watanabe, Y. Two histone marks establish the inner centromere and chromosome bi-orientation. Science303, 239–243 (2010). ArticleCAS Google Scholar
Tsukahara, T., Tanno, Y. & Watanabe, Y. Phosphorylation of the CPC by Cdk1 promotes chromosome bi-orientation. Nature467, 719–723 (2010). In references 10–12 a crucial chromatin factor is identified that dictates centromeric localization of the CPC. Histone H3 phosphorylated at T3 by haspin is directly recognized by the CPC subunit survivin. In human cells, borealin (in addition to survivin) also contributes to the centromeric localization of the CPC through direct interaction with the shugoshin proteins. Reference 13 shows that this interaction requires the phosphorylation of borealin by CDK1. ArticleCASPubMed Google Scholar
Fu, J., Bian, M., Liu, J., Jiang, Q. & Zhang, C. A single amino acid change converts Aurora-A into Aurora-B-like kinase in terms of partner specificity and cellular function. Proc. Natl Acad. Sci. USA106, 6939–6944 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hans, F., Skoufias, D. A., Dimitrov, S. & Margolis, R. L. Molecular distinctions between Aurora A and B: a single residue change transforms Aurora A into correctly localized and functional Aurora, B. Mol. Biol. Cell20, 3491–3502 (2009). References 14 and 15 demonstrate that a single amino acid change can convert aurora kinase A into an aurora kinase B-like kinase in terms of partner specificity and cellular function. ArticleCASPubMedPubMed Central Google Scholar
Lewis, K. D. et al. A multi-center phase II evaluation of the small molecule survivin suppressor YM155 in patients with unresectable stage III or IV melanoma. Invest. New Drugs 15 Oct 2009 (doi:10.1007/s10637-009-9333–9336).
Hansen, J. B. et al. SPC3042: a proapoptotic survivin inhibitor. Mol. Cancer Ther.7, 2736–2745 (2008). ArticleCASPubMed Google Scholar
Ditchfield, C. et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2, and Cenp-E to kinetochores. J. Cell Biol.161, 267–280 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol.161, 281–294 (2003). ArticleCASPubMedPubMed Central Google Scholar
Kaestner, P., Stolz, A. & Bastians, H. Determinants for the efficiency of anticancer drugs targeting either Aurora-A or Aurora-B kinases in human colon carcinoma cells. Mol. Cancer Ther.8, 2046–2056 (2009). ArticleCASPubMed Google Scholar
Cheung, C. H., Coumar, M. S., Hsieh, H. P. & Chang, J. Y. Aurora kinase inhibitors in preclinical and clinical testing. Expert Opin. Investig Drugs18, 379–398 (2009). ArticleCASPubMed Google Scholar
Kimmins, S. et al. Differential functions of the Aurora-B and Aurora-C kinases in mammalian spermatogenesis. Mol. Endocrinol.21, 726–739 (2007). ArticleCASPubMed Google Scholar
Tang, C. J., Lin, C. Y. & Tang, T. K. Dynamic localization and functional implications of Aurora-C kinase during male mouse meiosis. Dev. Biol.290, 398–410 (2006). ArticleCASPubMed Google Scholar
Sasai, K. et al. Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell. Motil. Cytoskeleton59, 249–263 (2004). ArticleCASPubMed Google Scholar
Li, X. et al. Direct association with inner centromere protein (INCENP) activates the novel chromosomal passenger protein, Aurora-C. J. Biol. Chem.279, 47201–47211 (2004). ArticleCASPubMed Google Scholar
Yan, X. et al. Aurora C is directly associated with Survivin and required for cytokinesis. Genes Cells10, 617–626 (2005). ArticleCASPubMed Google Scholar
Brown, J. R., Koretke, K. K., Birkeland, M. L., Sanseau, P. & Patrick, D. R. Evolutionary relationships of Aurora kinases: implications for model organism studies and the development of anti-cancer drugs. BMC Evol. Biol.4, 39 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Wilkinson, R. W. et al. AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin. Cancer Res.13, 3682–3688 (2007). ArticleCASPubMed Google Scholar
Strebhardt, K. & Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nature Rev. Cancer6, 321–330 (2006). ArticleCAS Google Scholar
Park, J. E. et al. Polo-box domain: a versatile mediator of polo-like kinase function. Cell. Mol. Life Sci.67, 1957–1970. ArticleCAS Google Scholar
Elia, A. E. et al. The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell115, 83–95 (2003). ArticleCASPubMed Google Scholar
Archambault, V., D'Avino, P. P., Deery, M. J., Lilley, K. S. & Glover, D. M. Sequestration of Polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis. Genes Dev.22, 2707–2720 (2008). ArticleCASPubMedPubMed Central Google Scholar
Garcia-Alvarez, B., de Carcer, G., Ibanez, S., Bragado-Nilsson, E. & Montoya, G. Molecular and structural basis of polo-like kinase 1 substrate recognition: Implications in centrosomal localization. Proc. Natl Acad. Sci. USA104, 3107–3112 (2007). ArticleCASPubMedPubMed Central Google Scholar
Seki, A., Coppinger, J. A., Jang, C. Y., Yates, J. R. & Fang, G. Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science320, 1655–1658 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lowery, D. M. et al. Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J.26, 2262–2273 (2007). ArticleCASPubMedPubMed Central Google Scholar
Burns, T. F., Fei, P., Scata, K. A., Dicker, D. T. & El-Deiry, W. S. Silencing of the novel p53 target gene Snk/Plk2 leads to mitotic catastrophe in paclitaxel (taxol)-exposed cells. Mol. Cell Biol.23, 5556–5571 (2003). ArticleCASPubMedPubMed Central Google Scholar
Warnke, S. et al. Polo-like kinase-2 is required for centriole duplication in mammalian cells. Curr. Biol.14, 1200–1207 (2004). ArticleCASPubMed Google Scholar
Ang, X. L., Seeburg, D. P., Sheng, M. & Harper, J. W. Regulation of postsynaptic RapGAP SPAR by Polo-like kinase 2 and the SCFbeta-TRCP ubiquitin ligase in hippocampal neurons. J. Biol. Chem.283, 29424–29432 (2008). ArticleCASPubMedPubMed Central Google Scholar
Inglis, K. J. et al. Polo-like kinase 2 (PLK2) phosphorylates α-synuclein at serine 129 in central nervous system. J. Biol. Chem.284, 2598–2602 (2009). ArticleCASPubMedPubMed Central Google Scholar
Seeburg, D. P., Feliu-Mojer, M., Gaiottino, J., Pak, D. T. & Sheng, M. Critical role of CDK5 and Polo-like kinase 2 in homeostatic synaptic plasticity during elevated activity. Neuron58, 571–583 (2008). ArticleCASPubMedPubMed Central Google Scholar
Seeburg, D. P. & Sheng, M. Activity-induced Polo-like kinase 2 is required for homeostatic plasticity of hippocampal neurons during epileptiform activity. J. Neurosci.28, 6583–6591 (2008). ArticleCASPubMedPubMed Central Google Scholar
Xie, S. et al. Reactive oxygen species-induced phosphorylation of p53 on serine 20 is mediated in part by polo-like kinase-3. J. Biol. Chem.276, 36194–36199 (2001). ArticleCASPubMed Google Scholar
Xie, S. et al. Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J. Biol. Chem.276, 43305–43312 (2001). ArticleCASPubMed Google Scholar
Bahassi el, M. et al. Mammalian Polo-like kinase 3 (Plk3) is a multifunctional protein involved in stress response pathways. Oncogene21, 6633–6640 (2002). ArticlePubMedCAS Google Scholar
Nigg, E. A. Centrosome duplication: of rules and licenses. Trends Cell Biol.17, 215–221 (2007). ArticleCASPubMed Google Scholar
Andrysik, Z. et al. The novel mouse Polo-like kinase 5 responds to DNA damage and localizes in the nucleolus. Nucleic Acids Res.38, 2931–2943 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yang, Y. et al. Polo-like kinase 3 functions as a tumor suppressor and is a negative regulator of hypoxia-inducible factor-1 alpha under hypoxic conditions. Cancer Res.68, 4077–4085 (2008). ArticleCASPubMedPubMed Central Google Scholar
Steegmaier, M. et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol.17, 316–322 (2007). ArticleCASPubMed Google Scholar
Lane, H. A. & Nigg, E. A. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol.135, 1701–1713 (1996). ArticleCASPubMed Google Scholar
Seong, Y. S. et al. A spindle checkpoint arrest and a cytokinesis failure by the dominant-negative polo-box domain of Plk1 in U-2 OS cells. J. Biol. Chem.277, 32282–32293 (2002). ArticleCASPubMed Google Scholar
Sumara, I. et al. Roles of polo-like kinase 1 in the assembly of functional mitotic spindles. Curr. Biol.14, 1712–1722 (2004). ArticleCASPubMed Google Scholar
Van Vugt, M. A. et al. Polo-like kinase-1 is required for bipolar spindle formation but is dispensable for APC/Cdc20 activation and initiation of cytokinesis. J. Biol. Chem.279, 36841–36854 (2004). ArticleCASPubMed Google Scholar
Archambault, V. & Glover, D. M. Polo-like kinases: conservation and divergence in their functions and regulation. Nature Rev. Mol. Cell Biol.10, 265–275 (2009). ArticleCAS Google Scholar
Cogswell, J. P., Brown, C. E., Bisi, J. E. & Neill, S. D. Dominant-negative polo-like kinase 1 induces mitotic catastrophe independent of cdc25C function. Cell Growth Differ.11, 615–623 (2000). CASPubMed Google Scholar
Liu, X., Lei, M. & Erikson, R. L. Normal cells, but not cancer cells, survive severe Plk1 depletion. Mol. Cell Biol.26, 2093–2108 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Bischoff, J. R. et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J.17, 3052–3065 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zhou, H. et al. Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nature Genet.20, 189–193 (1998). ArticleCASPubMed Google Scholar
Anand, S., Penrhyn-Lowe, S. & Venkitaraman, A. R. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell3, 51–62 (2003). ArticleCASPubMed Google Scholar
Meraldi, P., Honda, R. & Nigg, E. A. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53−/− cells. EMBO J.21, 483–492 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zhang, D. et al. Cre-loxP-controlled periodic Aurora-A overexpression induces mitotic abnormalities and hyperplasia in mammary glands of mouse models. Oncogene23, 8720–8730 (2004). ArticleCASPubMed Google Scholar
Zhang, D. et al. Aurora A overexpression induces cellular senescence in mammary gland hyperplastic tumors developed in p53-deficient mice. Oncogene27, 4305–4314 (2008). ArticleCASPubMed Google Scholar
Tatsuka, M. et al. Overexpression of Aurora-A potentiates HRAS-mediated oncogenic transformation and is implicated in oral carcinogenesis. Oncogene24, 1122–1127 (2005). ArticleCASPubMed Google Scholar
Kanda, A. et al. Aurora-B/AIM-1 kinase activity is involved in Ras-mediated cell transformation. Oncogene24, 7266–7272 (2005). ArticleCASPubMed Google Scholar
Ota, T. et al. Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability. Cancer Res.62, 5168–5177 (2002). CASPubMed Google Scholar
Tchatchou, S. et al. Aurora kinases A and B and familial breast cancer risk. Cancer Lett.247, 266–272 (2007). ArticleCASPubMed Google Scholar
Davies, H. et al. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res.65, 7591–7595 (2005). ArticleCASPubMed Google Scholar
Smith, M. R. et al. Malignant transformation of mammalian cells initiated by constitutive expression of the polo-like kinase. Biochem. Biophys. Res. Commun.234, 397–405 (1997). ArticleCASPubMed Google Scholar
Mundt, K. E., Golsteyn, R. M., Lane, H. A. & Nigg, E. A. On the regulation and function of human polo-like kinase 1 (PLK1): effects of overexpression on cell cycle progression. Biochem. Biophys. Res. Commun.239, 377–385 (1997). ArticleCASPubMed Google Scholar
Jang, Y. J., Lin, C. Y., Ma, S. & Erikson, R. L. Functional studies on the role of the C-terminal domain of mammalian polo-like kinase. Proc. Natl Acad. Sci. USA99, 1984–1989 (2002). ArticleCASPubMedPubMed Central Google Scholar
Simizu, S. & Osada, H. Mutations in the Plk gene lead to instability of Plk protein in human tumour cell lines. Nature Cell Biol.2, 852–854 (2000). ArticleCASPubMed Google Scholar
Macmillan, J. C., Hudson, J. W., Bull., S., Dennis, J. W. & Swallow, C. J. Comparative expression of the mitotic regulators SAK and PLK in colorectal cancer. Ann. Surg. Oncol.8, 729–740 (2001). ArticleCASPubMed Google Scholar
Kimura, M. T. et al. Two functional coding single nucleotide polymorphisms in STK15 (Aurora-A) coordinately increase esophageal cancer risk. Cancer Res.65, 3548–3554 (2005). ArticleCASPubMedPubMed Central Google Scholar
Syed, N. et al. Transcriptional silencing of Polo-like kinase 2 (SNK/PLK2) is a frequent event in B-cell malignancies. Blood107, 250–256 (2006). ArticleCASPubMed Google Scholar
Dai, W. et al. PRK, a cell cycle gene localized to 8p21, is downregulated in head and neck cancer. Genes Chromosom. Cancer27, 332–336 (2000). ArticleCASPubMed Google Scholar
Li, B. et al. Prk, a cytokine-inducible human protein serine/threonine kinase whose expression appears to be down-regulated in lung carcinomas. J. Biol. Chem.271, 19402–19408 (1996). ArticleCASPubMed Google Scholar
Wiest, J., Clark, A. M. & Dai, W. Intron/exon organization and polymorphisms of the PLK3/PRK gene in human lung carcinoma cell lines. Genes Chromosom. Cancer32, 384–389 (2001). ArticleCASPubMed Google Scholar
Conn, C. W., Hennigan, R. F., Dai, W., Sanchez, Y. & Stambrook, P. J. Incomplete cytokinesis and induction of apoptosis by overexpression of the mammalian polo-like kinase, Plk3. Cancer Res.60, 6826–6831 (2000). CASPubMed Google Scholar
Fode, C., Binkert, C. & Dennis, J. W. Constitutive expression of murine Sak-a suppresses cell growth and induces multinucleation. Mol. Cell Biol.16, 4665–4672 (1996). ArticleCASPubMedPubMed Central Google Scholar
Ko, M. A. et al. Plk4 haploinsufficiency causes mitotic infidelity and carcinogenesis. Nature Genet.37, 883–888 (2005). ArticleCASPubMed Google Scholar
Rosario, C. O. et al. Plk4 is required for cytokinesis and maintenance of chromosomal stability. Proc. Natl Acad. Sci. USA107, 6888–6893 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lu, L. Y. et al. Polo-like kinase 1 is essential for early embryonic development and tumor suppression. Mol. Cell Biol.28, 6870–6876 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lugo, T. G., Pendergast, A. M., Muller, A. J. & Witte, O. N. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science247, 1079–1082 (1990). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Med.2, 561–566 (1996). ArticleCASPubMed Google Scholar
Weinstein, I. B. Cancer. Addiction to oncogenes--the Achilles heal of cancer. Science297, 63–64 (2002). ArticleCASPubMed Google Scholar
Harrington, E. A. et al. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nature Med.10, 262–267 (2004). ArticleCASPubMed Google Scholar
Soncini, C. et al. PHA-680632, a novel Aurora kinase inhibitor with potent antitumoral activity. Clin. Cancer Res.12, 4080–4089 (2006). ArticleCASPubMed Google Scholar
Oke, A. et al. AZD1152 rapidly and negatively affects the growth and survival of human acute myeloid leukemia cells in vitro and in vivo. Cancer Res.69, 4150–4158 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hardwicke, M. A. et al. GSK1070916, a potent Aurora B/C kinase inhibitor with broad antitumor activity in tissue culture cells and human tumor xenograft models. Mol. Cancer Ther.8, 1808–1817 (2009). ArticleCASPubMed Google Scholar
Otto, T. et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell15, 67–78 (2009). ArticleCASPubMed Google Scholar
Leber, B. et al. Proteins required for centrosome clustering in cancer cells. Sci. Transl. Med.2, 33–38 (2010). ArticleCAS Google Scholar
Kwon, M. et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev.22, 2189–2203 (2008). Reference 94 shows that tumour cells with multiple centrosomes can be made susceptible to deleterious multipolar cell divisions when centrosome clustering is perturbed. In reference 93, this finding was used to screen for proteins involved in centrosome clustering in tumour cells. ArticleCASPubMedPubMed Central Google Scholar
Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell137, 835–848 (2009). PLK1 and APC/C were identified in a synthetic lethal screen with oncogenic KRAS-G13D. ArticleCASPubMedPubMed Central Google Scholar
van Vugt, M. A., Bras., A. & Medema, R. H. Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol. Cell15, 799–811 (2004). ArticleCASPubMed Google Scholar
Lei, M. & Erikson, R. L. Plk1 depletion in nontransformed diploid cells activates the DNA-damage checkpoint. Oncogene27, 3935–3943 (2008). ArticleCASPubMed Google Scholar
Lindqvist, A., Rodriguez-Bravo, V. & Medema, R. H. The decision to enter mitosis: feedback and redundancy in the mitotic entry network. J. Cell Biol.185, 193–202 (2009). ArticleCASPubMedPubMed Central Google Scholar
Watanabe, N. et al. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP. Proc. Natl Acad. Sci. USA101, 4419–4424 (2004). ArticleCASPubMedPubMed Central Google Scholar
Roshak, A. K. et al. The human polo-like kinase, PLK, regulates cdc2/cyclin B through phosphorylation and activation of the cdc25C phosphatase. Cell Signal12, 405–411 (2000). ArticleCASPubMed Google Scholar
Hanisch, A., Wehner, A., Nigg, E. A. & Sillje, H. H. Different Plk1 functions show distinct dependencies on Polo-Box domain-mediated targeting. Mol. Biol. Cell17, 448–459 (2006). ArticleCASPubMedPubMed Central Google Scholar
van de Weerdt, B. C. et al. Polo-box domains confer target specificity to the Polo-like kinase family. Biochim. Biophys. Acta1783, 1015–1022 (2008). ArticleCASPubMed Google Scholar
Hirota, T. et al. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell114, 585–598 (2003). ArticleCASPubMed Google Scholar
Dutertre, S. et al. Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2-M transition. J. Cell Sci.117, 2523–2531 (2004). ArticleCASPubMed Google Scholar
Macurek, L. et al. Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature455, 119–123 (2008). References 35 and 105 show that PLK1 is phosphorylated and activated by aurora kinase A and its cofactor BORA to promote mitotic entry. ArticleCASPubMed Google Scholar
Chan, E. H., Santamaria, A., Sillje, H. H. & Nigg, E. A. Plk1 regulates mitotic Aurora A function through betaTrCP-dependent degradation of hBora. Chromosoma117, 457–469 (2008). ArticleCASPubMedPubMed Central Google Scholar
Van Horn, R. D. et al. Cdk1 activity is required for mitotic activation of Aurora A during G2/M transition of human cells. J. Biol. Chem.285, 21849–21857 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hata, T. et al. RNA interference targeting aurora kinase a suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells. Cancer Res.65, 2899–2905 (2005). ArticleCASPubMed Google Scholar
Marumoto, T. et al. Roles of aurora-A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells7, 1173–1182 (2002). ArticleCASPubMed Google Scholar
Hayashi-Takanaka, Y., Yamagata, K., Nozaki, N. & Kimura, H. Visualizing histone modifications in living cells: spatiotemporal dynamics of H3 phosphorylation during interphase. J. Cell Biol.187, 781–790 (2009). This study shows that transient inhibition of aurora kinase B activity and histone H3 phosphorylation in interphase can affect accurate chromosome segregation in anaphase. ArticleCASPubMedPubMed Central Google Scholar
Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature438, 1116–1122 (2005). ArticleCASPubMed Google Scholar
Hirota, T., Lipp, J. J., Toh, B. H. & Peters, J. M. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature438, 1176–1180 (2005). ArticleCASPubMed Google Scholar
Nozawa, R. S. et al. Human POGZ modulates dissociation of HP1alpha from mitotic chromosome arms through Aurora B activation. Nature Cell Biol.12, 719–727 (2010). ArticleCASPubMed Google Scholar
Monaco, L. et al. Inhibition of Aurora-B kinase activity by poly(ADP-ribosyl)ation in response to DNA damage. Proc. Natl Acad. Sci. USA102, 14244–14248 (2005). ArticleCASPubMedPubMed Central Google Scholar
Hannak, E., Kirkham, M., Hyman, A. A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol.155, 1109–1116 (2001). ArticleCASPubMedPubMed Central Google Scholar
Casenghi, M. et al. Polo-like kinase 1 regulates Nlp, a centrosome protein involved in microtubule nucleation. Dev. Cell5, 113–125 (2003). ArticleCASPubMed Google Scholar
Oshimori, N., Ohsugi, M. & Yamamoto, T. The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity. Nature Cell Biol.8, 1095–1101 (2006). ArticleCASPubMed Google Scholar
Toji, S. et al. The centrosomal protein Lats2 is a phosphorylation target of Aurora-A kinase. Genes Cells9, 383–397 (2004). ArticleCASPubMed Google Scholar
Mori, D. et al. NDEL1 phosphorylation by Aurora-A kinase is essential for centrosomal maturation, separation, and TACC3 recruitment. Mol. Cell Biol.27, 352–367 (2007). ArticleCASPubMed Google Scholar
Giet, R. et al. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol.156, 437–451 (2002). ArticleCASPubMedPubMed Central Google Scholar
Roghi, C. et al. The Xenopus protein kinase pEg2 associates with the centrosome in a cell cycle-dependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly. J. Cell Sci.111, 557–572 (1998). CASPubMed Google Scholar
Soung, N. K. et al. Requirement of hCenexin for proper mitotic functions of polo-like kinase 1 at the centrosomes. Mol. Cell Biol.26, 8316–8335 (2006). ArticleCASPubMedPubMed Central Google Scholar
Tsai, M. Y. & Zheng, Y. Aurora A kinase-coated beads function as microtubule-organizing centers and enhance RanGTP-induced spindle assembly. Curr. Biol.15, 2156–2163 (2005). ArticleCASPubMed Google Scholar
Zhang, X., Ems-McClung, S. C. & Walczak, C. E. Aurora A phosphorylates MCAK to control ran-dependent spindle bipolarity. Mol. Biol. Cell19, 2752–2765 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ohi, R., Sapra, T., Howard, J. & Mitchison, T. J. Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol. Biol. Cell15, 2895–2906 (2004). ArticleCASPubMedPubMed Central Google Scholar
Gadea, B. B. & Ruderman, J. V. Aurora B is required for mitotic chromatin-induced phosphorylation of Op18/Stathmin. Proc. Natl Acad. Sci. USA103, 4493–4498 (2006). ArticleCASPubMedPubMed Central Google Scholar
Maresca, T. J. et al. Spindle assembly in the absence of a RanGTP gradient requires localized CPC activity. Curr. Biol.19, 1210–1215 (2009). ArticleCASPubMedPubMed Central Google Scholar
Clarke, P. R. & Zhang, C. Spatial and temporal coordination of mitosis by Ran GTPase. Nature Rev. Mol. Cell Biol.9, 464–477 (2008). ArticleCAS Google Scholar
Kueng, S. et al. Wapl controls the dynamic association of cohesin with chromatin. Cell127, 955–967 (2006). ArticleCASPubMed Google Scholar
Gandhi, R., Gillespie, P. J. & Hirano, T. Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr. Biol.16, 2406–2417 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hauf, S. et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol.3, e69 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Losada, A., Hirano, M. & Hirano, T. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev.16, 3004–3016 (2002). ArticleCASPubMedPubMed Central Google Scholar
Sumara, I. et al. The dissociation of cohesin from chromosomes in prophase is regulated by Polo-like kinase. Mol. Cell9, 515–525 (2002). ArticleCASPubMed Google Scholar
Gimenez-Abian, J. F. et al. Regulation of sister chromatid cohesion between chromosome arms. Curr. Biol.14, 1187–1193 (2004). ArticleCASPubMed Google Scholar
Peters, J. M., Tedeschi, A. & Schmitz, J. The cohesin complex and its roles in chromosome biology. Genes Dev.22, 3089–3114 (2008). ArticleCASPubMed Google Scholar
Nasmyth, K. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet.43, 525–558 (2009). ArticleCASPubMed Google Scholar
Hauf, S., Waizenegger, I. C. & Peters, J. M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science293, 1320–1323 (2001). ArticleCASPubMed Google Scholar
Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J. M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell103, 399–410 (2000). ArticleCASPubMed Google Scholar
Dai, J., Sullivan, B. A. & Higgins, J. M. Regulation of mitotic chromosome cohesion by Haspin and Aurora, B. Dev. Cell11, 741–750 (2006). ArticleCASPubMed Google Scholar
Kitajima, T. S. et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature441, 46–52 (2006). ArticleCASPubMed Google Scholar
Tang, Z. et al. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev. Cell10, 575–585 (2006). ArticleCASPubMed Google Scholar
McGuinness, B. E., Hirota, T., Kudo, N. R., Peters, J. M. & Nasmyth, K. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol.3, e86 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Famulski, J. K. & Chan, G. K. Aurora B kinase-dependent recruitment of hZW10 and hROD to tensionless kinetochores. Curr. Biol.17, 2143–2149 (2007). ArticleCASPubMed Google Scholar
Kawashima, S. A., Yamagishi, Y., Honda, T., Ishiguro, K. & Watanabe, Y. Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science327, 172–177 (2010). This elegant study explains how BUB1 regulates the localization of shugoshin, the protector of centromere cohesin. Through phosphorylation of histone H2A, BUB1 creates a docking site for shugoshin at the centromere. ArticleCASPubMed Google Scholar
Resnick, T. D. et al. INCENP and Aurora B promote meiotic sister chromatid cohesion through localization of the Shugoshin MEI-S332 in Drosophila. Dev. Cell11, 57–68 (2006). ArticleCASPubMedPubMed Central Google Scholar
Pouwels, J. et al. Shugoshin 1 plays a central role in kinetochore assembly and is required for kinetochore targeting of Plk1. Cell Cycle6, 1579–1585 (2007). ArticleCASPubMed Google Scholar
Tanaka, T. U. et al. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell108, 317–329 (2002). ArticleCASPubMed Google Scholar
Lampson, M. A., Renduchitala, K., Khodjakov, A. & Kapoor, T. M. Correcting improper chromosome-spindle attachments during cell division. Nature Cell Biol.6, 232–237 (2004). ArticleCASPubMed Google Scholar
Liu, D., Vader, G., Vromans, M. J., Lampson, M. A. & Lens, S. M. Sensing chromosome bi-orientation by spatial separation of aurora B kinase from kinetochore substrates. Science323, 1350–1353 (2009). Experimental evidence for the model that chromosome bi-orientation spatially separates kinetochore substrates from aurora kinase B localized at the inner centromere, allowing stabilization of bipolar attachments. ArticleCASPubMedPubMed Central Google Scholar
Andrews, P. D. et al. Aurora B regulates MCAK at the mitotic centromere. Dev. Cell6, 253–268 (2004). ArticleCASPubMed Google Scholar
DeLuca, J. G. et al. Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell127, 969–982 (2006). ArticleCASPubMed Google Scholar
Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell127, 983–997 (2006). ArticleCASPubMed Google Scholar
Welburn, J. P. et al. Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol. Cell38, 383–392 (2010). This study shows that aurora kinase B phosphorylates three spatially distinct targets in the KMN network, the microtubule binding unit of the kinetochore. Differential phosphorylation of these targets in response to changes in tension probably affects the stability of kinetochore-microtubule attachments. ArticleCASPubMedPubMed Central Google Scholar
Liu, D. et al. Regulated targeting of protein phosphatase 1 to the outer kinetochore by KNL1 opposes Aurora B kinase. J. Cell Biol.188, 809–820 (2010). Through phosphorylation of KNL1, aurora kinase B regulates the kinetochore localization of its counteracting phosphatase PP1γ. ArticleCASPubMedPubMed Central Google Scholar
Goto, H. et al. Complex formation of Plk1 and INCENP required for metaphase-anaphase transition. Nature Cell Biol.8, 180–187 (2006). ArticleCASPubMed Google Scholar
Rosasco-Nitcher, S. E., Lan, W., Khorasanizadeh, S. & Stukenberg, P. T. Centromeric Aurora-B activation requires TD-60, microtubules, and substrate priming phosphorylation. Science319, 469–472 (2008). ArticleCASPubMed Google Scholar
Lenart, P. et al. The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr. Biol.17, 304–315 (2007). ArticleCASPubMed Google Scholar
Lampson, M. A. & Kapoor, T. M. The human mitotic checkpoint protein BubR1 regulates chromosome-spindle attachments. Nature Cell Biol.7, 93–98 (2005). ArticleCASPubMed Google Scholar
Elowe, S., Hummer, S., Uldschmid, A., Li, X. & Nigg, E. A. Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev.21, 2205–2219 (2007). ArticleCASPubMedPubMed Central Google Scholar
Elowe, S. et al. Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1. J. Cell Sci.123, 84–94 (2010). ArticleCASPubMed Google Scholar
Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol.7, 644–656 (2006). ArticleCAS Google Scholar
Murata-Hori, M., Tatsuka, M. & Wang, Y. L. Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. Mol. Biol. Cell13, 1099–1108 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hummer, S. & Mayer, T. U. Cdk1 negatively regulates midzone localization of the mitotic kinesin Mklp2 and the chromosomal passenger complex. Curr. Biol.19, 607–612 (2009). ArticleCASPubMed Google Scholar
Neef, R. et al. Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1. Nature Cell Biol.9, 436–444 (2007). ArticleCASPubMed Google Scholar
Petronczki, M., Glotzer, M., Kraut, N. & Peters, J. M. Polo-like kinase 1 triggers the initiation of cytokinesis in human cells by promoting recruitment of the RhoGEF Ect2 to the central spindle. Dev. Cell12, 713–725 (2007). ArticleCASPubMed Google Scholar
Guse, A., Mishima, M. & Glotzer, M. Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr. Biol.15, 778–786 (2005). ArticleCASPubMed Google Scholar
Wolfe, B. A., Takaki, T., Petronczki, M. & Glotzer, M. Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation. PLoS Biol.7, e1000110 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Burkard, M. E. et al. Chemical genetics reveals the requirement for Polo-like kinase 1 activity in positioning RhoA and triggering cytokinesis in human cells. Proc. Natl Acad. Sci. USA104, 4383–4388 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gruneberg, U., Neef, R., Honda, R., Nigg, E. A. & Barr, F. A. Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2. J. Cell Biol.166, 167–172 (2004). ArticleCASPubMedPubMed Central Google Scholar
Burkard, M. E. et al. Plk1 self-organization and priming phosphorylation of HsCYK-4 at the spindle midzone regulate the onset of division in human cells. PLoS Biol.7, e1000111 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Kaitna, S., Mendoza, M., Jantsch-Plunger, V. & Glotzer, M. Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr. Biol.10, 1172–1181 (2000). ArticleCASPubMed Google Scholar
Neef, R., Klein, U. R., Kopajtich, R. & Barr, F. A. Cooperation between mitotic kinesins controls the late stages of cytokinesis. Curr. Biol.16, 301–307 (2006). ArticleCASPubMed Google Scholar
Douglas, M. E., Davies, T., Joseph, N. & Mishima, M. Aurora B and 14-3-3 coordinately regulate clustering of centralspindlin during cytokinesis. Curr. Biol.20, 927–933.
Steigemann, P. et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell136, 473–484 (2009). ArticleCASPubMed Google Scholar
Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell125, 85–98 (2006). ArticleCASPubMed Google Scholar
Floyd, S., Pines, J. & Lindon, C. APC/C Cdh1 targets aurora kinase to control reorganization of the mitotic spindle at anaphase. Curr. Biol.18, 1649–1658 (2008). ArticleCASPubMed Google Scholar
Brito, D. A. & Rieder, C. L. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol.16, 1194–1200 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gascoigne, K. E. & Taylor, S. S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell14, 111–122 (2008). ArticleCASPubMed Google Scholar
Huang, H. C., Shi, J., Orth, J. D. & Mitchison, T. J. Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell16, 347–358 (2009). Knock down of the APC/C subunit CDC20 prevented cells from exiting mitosis. The resulting mitotic arrest promoted cell death in mitosis. The cell killing effect of this approach appeared to be more effective than that of anti-mitotic drugs and correlated with duration of the mitotic arrest. ArticleCASPubMedPubMed Central Google Scholar
Janssen, A., Kops, G. J. & Medema, R. H. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc. Natl Acad. Sci. USA106, 19108–19113 (2009). ArticleCASPubMedPubMed Central Google Scholar
Scharer, C. D. et al. Aurora kinase inhibitors synergize with paclitaxel to induce apoptosis in ovarian cancer cells. J. Transl. Med.6, 79 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Bedard, P. L., Di Leo, A. & Piccart-Gebhart, M. J. Taxanes: optimizing adjuvant chemotherapy for early-stage breast cancer. Nature Rev. Clin. Oncol.7, 22–36 (2010). ArticleCAS Google Scholar
VanderPorten, E. C. et al. The Aurora kinase inhibitor SNS-314 shows broad therapeutic potential with chemotherapeutics and synergy with microtubule-targeted agents in a colon carcinoma model. Mol. Cancer Ther.8, 930–939 (2009). ArticleCASPubMed Google Scholar
Nair, J. S., de Stanchina, E. & Schwartz, G. K. The topoisomerase I poison CPT-11 enhances the effect of the aurora B kinase inhibitor AZD1152 both in vitro and in vivo. Clin. Cancer Res.15, 2022–2030 (2009). ArticleCASPubMed Google Scholar
Wysong, D. R., Chakravarty, A., Hoar, K. & Ecsedy, J. A. The inhibition of Aurora A abrogates the mitotic delay induced by microtubule perturbing agents. Cell Cycle8, 876–888 (2009). ArticleCASPubMed Google Scholar
Vader, G., Maia, A. F. & Lens, S. M. The chromosomal passenger complex and the spindle assembly checkpoint: kinetochore-microtubule error correction and beyond. Cell Div.3, 10 (2008).
Knight, Z. A. & Shokat, K. M. Chemical genetics: where genetics and pharmacology meet. Cell128, 425–430 (2007). ArticleCASPubMed Google Scholar
Schoffski, P. Polo-like kinase (PLK) inhibitors in preclinical and early clinical development in oncology. Oncologist14, 559–570 (2009). ArticleCASPubMed Google Scholar
Degenhardt, Y. & Lampkin, T. Targeting Polo-like kinase in cancer therapy. Clin. Cancer Res.16, 384–389 (2010). ArticleCASPubMed Google Scholar
Reindl, W., Yuan, J., Kramer, A., Strebhardt, K. & Berg, T. Inhibition of polo-like kinase 1 by blocking polo-box domain-dependent protein-protein interactions. Chem. Biol.15, 459–466 (2008). ArticleCASPubMed Google Scholar
Reindl, W., Yuan, J., Kramer, A., Strebhardt, K. & Berg, T. A pan-specific inhibitor of the polo-box domains of polo-like kinases arrests cancer cells in mitosis. Chembiochem10, 1145–1148 (2009). ArticleCASPubMed Google Scholar
Garland, L. L., Taylor, C., Pilkington, D. L., Cohen, J. L. & Von Hoff, D. D. A phase I pharmacokinetic study of HMN-214, a novel oral stilbene derivative with polo-like kinase-1-interacting properties, in patients with advanced solid tumors. Clin. Cancer Res.12, 5182–5189 (2006). ArticleCASPubMed Google Scholar
Watanabe, N. et al. Deficiency in chromosome congression by the inhibition of Plk1 polo box domain-dependent recognition. J. Biol. Chem.284, 2344–2353 (2009). ArticleCASPubMed Google Scholar
Peters, U., Cherian, J., Kim, J. H., Kwok, B. H. & Kapoor, T. M. Probing cell-division phenotype space and Polo-like kinase function using small molecules. Nature Chem. Biol.2, 618–626 (2006). ArticleCAS Google Scholar
Kitzen, J. J., de Jonge, M. J. & Verweij, J. Aurora kinase inhibitors. Crit. Rev. Oncol. Hematol.73, 99–110 (2010). ArticleCASPubMed Google Scholar
Mountzios, G., Terpos, E. & Dimopoulos, M. A. Aurora kinases as targets for cancer therapy. Cancer Treat Rev.34, 175–182 (2008). ArticleCASPubMed Google Scholar
Soung, N. K. et al. Plk1-dependent and -independent roles of an ODF2 splice variant, hCenexin1, at the centrosome of somatic cells. Dev. Cell16, 539–550 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kang, Y. H. et al. Self-regulated Plk1 recruitment to kinetochores by the Plk1-PBIP1 interaction is critical for proper chromosome segregation. Mol. Cell24, 409–422 (2006). ArticleCASPubMed Google Scholar
Qi, W., Tang, Z. & Yu, H. Phosphorylation- and polo-box-dependent binding of Plk1 to Bub1 is required for the kinetochore localization of Plk1. Mol. Biol. Cell17, 3705–3716 (2006). ArticleCASPubMedPubMed Central Google Scholar
Nishino, M. et al. NudC is required for Plk1 targeting to the kinetochore and chromosome congression. Curr. Biol.16, 1414–1421 (2006). ArticleCASPubMed Google Scholar
Neef, R. et al. Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J. Cell Biol.162, 863–875 (2003). ArticleCASPubMedPubMed Central Google Scholar
Petretti, C. et al. The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Rep.7, 418–424 (2006). CASPubMedPubMed Central Google Scholar
Terada, Y., Uetake, Y. & Kuriyama, R. Interaction of Aurora-A and centrosomin at the microtubule-nucleating site in Drosophila and mammalian cells. J. Cell Biol.162, 757–763 (2003). ArticleCASPubMedPubMed Central Google Scholar
Eyers, P. A., Erikson, E., Chen, L. G. & Maller, J. L. A novel mechanism for activation of the protein kinase Aurora, A. Curr. Biol.13, 691–697 (2003). ArticleCASPubMed Google Scholar
Du, J., Jablonski, S., Yen, T. J. & Hannon, G. J. Astrin regulates Aurora-A localization. Biochem. Biophys. Res. Commun.370, 213–219 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ainsztein, A. M., Kandels-Lewis, S. E., Mackay, A. M. & Earnshaw, W. C. INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J. Cell Biol.143, 1763–1774 (1998). ArticleCASPubMedPubMed Central Google Scholar
Kiyomitsu, T., Iwasaki, O., Obuse, C. & Yanagida, M. Inner centromere formation requires hMis14, a trident kinetochore protein that specifically recruits HP1 to human chromosomes. J. Cell Biol.188, 791–807 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lens, S. M. et al. Uncoupling the central spindle-associated function of the chromosomal passenger complex from its role at centromeres. Mol. Biol. Cell17, 1897–1909 (2006). ArticleCASPubMedPubMed Central Google Scholar
Vader, G., Kauw, J. J., Medema, R. H. & Lens, S. M. Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Rep.7, 85–92 (2006). ArticleCASPubMed Google Scholar
Klein, U. R., Nigg, E. A. & Gruneberg, U. Centromere targeting of the chromosomal passenger complex requires a ternarysubcomplex of Borealin, Survivin, and the N-terminal domain of INCENP. Mol. Biol. Cell17, 2547–2558 (2006). ArticleCASPubMedPubMed Central Google Scholar
Jeyaprakash, A. A. et al. Structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passengers travel together. Cell131, 271–285 (2007). ArticleCASPubMed Google Scholar
Schvartzman, J. M., Sotillo, R. & Benezra, R. Mitotic chromosomal instability and cancer: mouse modelling of the human disease. Nature Rev. Cancer10, 102–115 (2010). ArticleCAS Google Scholar
Pellegrino, R. et al. Oncogenic and tumor suppressive roles of polo-like kinases in human hepatocellular carcinoma. Hepatology51, 857–868 (2010). CASPubMed Google Scholar
Wang, X. et al. Overexpression of aurora kinase A in mouse mammary epithelium induces genetic instability preceding mammary tumor formation. Oncogene25, 7148–7158 (2006). ArticleCASPubMed Google Scholar
Li, C. C., Chu, H. Y., Yang, C. W., Chou, C. K. & Tsai, T. F. Aurora-A overexpression in mouse liver causes p53-dependent premitotic arrest during liver regeneration. Mol. Cancer Res.7, 678–688 (2009). ArticleCASPubMed Google Scholar
Kitajima, S. et al. Constitutive phosphorylation of aurora-a on ser51 induces its stabilization and consequent overexpression in cancer. PLoS One2, e944 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Zeng, W. F., Navaratne, K., Prayson, R. A. & Weil, R. J. Aurora B expression correlates with aggressive behaviour in glioblastoma multiforme. J. Clin. Pathol.60, 218–221 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chen, Y. J. et al. Overexpression of Aurora B is associated with poor prognosis in epithelial ovarian cancer patients. Virchows Arch.455, 431–440 (2009). ArticleCASPubMed Google Scholar
Tanaka, S. et al. Aurora kinase B is a predictive factor for the aggressive recurrence of hepatocellular carcinoma after curative hepatectomy. Br. J. Surg.95, 611–619 (2008). ArticleCASPubMed Google Scholar
Forbes, S. A. et al. The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr. Protoc Hum. Genet.57, 10.11.1–1011.26 (2008). Google Scholar
Ulisse, S. et al. Expression of Aurora kinases in human thyroid carcinoma cell lines and tissues. Int. J. Cancer119, 275–282 (2006). ArticleCASPubMed Google Scholar