The Hippo pathway and human cancer (original) (raw)
Tapon, N. et al. salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell110, 467–478 (2002). The discovery ofsalvadorand its functional link towartsoutlined the existence of a new growth control pathway inD. melanogaster, known most commonly as the Hippo pathway. This paper also provided the first evidence that the Hippo pathway is perturbed in human cancer. ArticleCASPubMed Google Scholar
Justice, R. W., Zilian, O., Woods, D. F., Noll, M. & Bryant, P. J. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev.9, 534–546 (1995). CASPubMed Google Scholar
Xu, T., Wang, W., Zhang, S., Stewart, R. A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development121, 1053–1063 (1995). CASPubMed Google Scholar
Harvey, K. & Tapon, N. The Salvador-Warts-Hippo pathway - an emerging tumour-suppressor network. Nature Rev. Cancer7, 182–191 (2007). CAS Google Scholar
Harvey, K. F., Pfleger, C. M. & Hariharan, I. K. The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell114, 457–467 (2003). CASPubMed Google Scholar
Udan, R. S., Kango-Singh, M., Nolo, R., Tao, C. & Halder, G. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nature Cell Biol.5, 914–920 (2003). CASPubMed Google Scholar
Pantalacci, S., Tapon, N. & Leopold, P. The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nature Cell Biol.5, 921–927 (2003). CASPubMed Google Scholar
Wu, S., Huang, J., Dong, J. & Pan, D. hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell114, 445–456 (2003). CASPubMed Google Scholar
Kango-Singh, M. et al. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development129, 5719–5730 (2002). CASPubMed Google Scholar
Huang, J., Wu, S., Barrera, J., Matthews, K. & Pan, D. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell122, 421–434 (2005). This paper described the identification of the YKI transcriptional regulator as the crucial downstream target of theD. melanogasterHippo pathway. CASPubMed Google Scholar
Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev.21, 2747–2761 (2007). CASPubMedPubMed Central Google Scholar
Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell130, 1120–1133 (2007). CASPubMedPubMed Central Google Scholar
Hong, W. & Guan, K. L. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin. Cell Dev. Biol.23, 785–793 (2012). CASPubMedPubMed Central Google Scholar
Grusche, F. A., Richardson, H. E. & Harvey, K. F. Upstream regulation of the hippo size control pathway. Curr. Biol.20, R574–R582 (2010). CASPubMed Google Scholar
Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell147, 759–772 (2011). CASPubMed Google Scholar
Grzeschik, N. A., Parsons, L. M., Allott, M. L., Harvey, K. F. & Richardson, H. E. Lgl, aPKC, and Crumbs regulate the Salvador/Warts/Hippo pathway through two distinct mechanisms. Curr. Biol.20, 573–581 (2010). CASPubMed Google Scholar
Robinson, B. S., Huang, J., Hong, Y. & Moberg, K. H. Crumbs regulates Salvador/Warts/Hippo signaling in Drosophila via the FERM-domain protein expanded. Curr. Biol.20, 582–590 (2010). CASPubMedPubMed Central Google Scholar
Ling, C. et al. The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded. Proc. Natl Acad. Sci. USA107, 10532–10537 (2010). CASPubMedPubMed Central Google Scholar
Chen, C. L. et al. The apical-basal cell polarity determinant Crumbs regulates Hippo signaling in Drosophila. Proc. Natl Acad. Sci. USA107, 15810–15815 (2010). CASPubMedPubMed Central Google Scholar
Varelas, X. et al. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev. Cell19, 831–844 (2010). CASPubMed Google Scholar
Zhao, M., Szafranski, P., Hall, C. A. & Goode, S. Basolateral junctions utilize warts signaling to control epithelial-mesenchymal transition and proliferation crucial for migration and invasion of Drosophila ovarian epithelial cells. Genetics178, 1947–1971 (2008). This paper, together with references 17–21, discovered regulatory links between ABCPs and the Hippo pathway. CASPubMedPubMed Central Google Scholar
Yu, F. X. et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell150, 780–791 (2012). This report, defining GPCRs as upstream regulators of the Hippo pathway, greatly increased the understanding of how mammalian Hippo pathway activity is controlled. CASPubMedPubMed Central Google Scholar
Bennett, F. C. & Harvey, K. F. Fat cadherin modulates organ size in Drosophila via the Salvador/Warts/Hippo signaling pathway. Curr. Biol.16, 2101–2110 (2006). CASPubMed Google Scholar
Willecke, M. et al. The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr. Biol.16, 2090–2100 (2006). CASPubMed Google Scholar
Silva, E., Tsatskis, Y., Gardano, L., Tapon, N. & McNeill, H. The tumor-suppressor gene fat controls tissue growth upstream of expanded in the hippo signaling pathway. Curr. Biol.16, 2081–2089 (2006). CASPubMed Google Scholar
Cho, E. et al. Delineation of a Fat tumor suppressor pathway. Nature Genet.38, 1142–1150 (2006). CASPubMed Google Scholar
Camargo, F. D. et al. YAP1 increases organ size and expands undifferentiated progenitor cells. Curr. Biol.17, 2054–2060 (2007). This paper, together with references 12 and 13, showed that Hippo pathway signalling and function is conserved betweenD. melanogasterand mammals, and provided initial evidence that Hippo pathway activity is frequently disrupted in human carcinomas. CASPubMed Google Scholar
Schlegelmilch, K. et al. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell144, 782–795 (2011). CASPubMedPubMed Central Google Scholar
Heallen, T. et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science332, 458–461 (2011). CASPubMedPubMed Central Google Scholar
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602 (1997). CASPubMed Google Scholar
Aylon, Y. et al. A positive feedback loop between the p53 and Lats2 tumor suppressors prevents tetraploidization. Genes Dev.20, 2687–2700 (2006). CASPubMedPubMed Central Google Scholar
Overholtzer, M. et al. Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc. Natl Acad. Sci. USA103, 12405–12410 (2006). CASPubMedPubMed Central Google Scholar
Zhao, B. et al. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev.26, 54–68 (2012). PubMedPubMed Central Google Scholar
Zhang, X. et al. The Hippo pathway transcriptional co-activator, YAP, is an ovarian cancer oncogene. Oncogene30, 2810–2822 (2011). CASPubMed Google Scholar
Izzo, J. G. et al. Pretherapy nuclear factor-κB status, chemoradiation resistance, and metastatic progression in esophageal carcinoma. Mol. Cancer Ther.5, 2844–2850 (2006). CASPubMed Google Scholar
Gautam, A. & Bepler, G. Suppression of lung tumor formation by the regulatory subunit of ribonucleotide reductase. Cancer Res.66, 6497–6502 (2006). CASPubMed Google Scholar
Valent, P. et al. Cancer stem cell definitions and terminology: the devil is in the details. Nature Rev. Cancer12, 767–775 (2012). CAS Google Scholar
Gatenby, R. A. A change of strategy in the war on cancer. Nature459, 508–509 (2009). CASPubMed Google Scholar
Morata, G. & Ripoll, P. Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev. Biol.42, 211–221 (1975). CASPubMed Google Scholar
de Beco, S., Ziosi, M. & Johnston, L. A. New frontiers in cell competition. Dev. Dyn.241, 831–841 (2012). PubMedPubMed Central Google Scholar
Davidson, J. D. et al. An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines. Cancer Res.64, 3761–3766 (2004). CASPubMed Google Scholar
Ramalho-Santos, M. Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science298, 597–600 (2002). CASPubMed Google Scholar
Steinhardt, A. A. et al. Expression of Yes-associated protein in common solid tumors. Hum. Pathol.39, 1582–1589 (2008). CASPubMedPubMed Central Google Scholar
Lian, I. et al. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev.24, 1106–1118 (2010). CASPubMedPubMed Central Google Scholar
Varelas, X. et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nature Cell Biol.10, 837–848 (2008). CASPubMed Google Scholar
Hong, J. H. et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science309, 1074–1078 (2005). CASPubMed Google Scholar
Schroeder, M. C. & Halder, G. Regulation of the Hippo pathway by cell architecture and mechanical signals. Semin. Cell Dev. Biol.23, 803–811 (2012). CASPubMed Google Scholar
Wang, Y. Wnt/Planar cell polarity signaling: a new paradigm for cancer therapy. Mol. Cancer Ther.8, 2103–2109 (2009). CASPubMed Google Scholar
Martin-Belmonte, F. & Perez-Moreno, M. Epithelial cell polarity, stem cells and cancer. Nature Rev. Cancer12, 23–38 (2012). CAS Google Scholar
Humbert, P. O. et al. Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module. Oncogene27, 6888–6907 (2008). CASPubMed Google Scholar
Guilford, P. et al. E-cadherin germline mutations in familial gastric cancer. Nature392, 402–405 (1998). CASPubMed Google Scholar
Kim, N. G., Koh, E., Chen, X. & Gumbiner, B. M. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc. Natl Acad. Sci. USA108, 11930–11935 (2011). CASPubMedPubMed Central Google Scholar
Holley, R. W. Control of growth of mammalian cells in cell culture. Nature258, 487–490 (1975). CASPubMed Google Scholar
Lallemand, D., Curto, M., Saotome, I., Giovannini, M. & McClatchey, A. I. NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev.17, 1090–1100 (2003). CASPubMedPubMed Central Google Scholar
Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell139, 891–906 (2009). CASPubMedPubMed Central Google Scholar
Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature474, 179–183 (2011). CASPubMed Google Scholar
Wada, K., Itoga, K., Okano, T., Yonemura, S. & Sasaki, H. Hippo pathway regulation by cell morphology and stress fibers. Development138, 3907–3914 (2011). CASPubMed Google Scholar
Sansores-Garcia, L. et al. Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J.30, 2325–2335 (2011). CASPubMedPubMed Central Google Scholar
Fernandez, B. G. et al. Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development138, 2337–2346 (2011). References 58–61 described regulatory links between the Hippo pathway and the actin cytoskeleton and suggested that the pathway responds to mechanical stimuli. CASPubMed Google Scholar
Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nature Rev. Cancer9, 108–122 (2009). CASPubMed Google Scholar
Simpson, C. D., Anyiwe, K. & Schimmer, A. D. Anoikis resistance and tumor metastasis. Cancer Lett.272, 177–185 (2008). CASPubMed Google Scholar
McClatchey, A. I. et al. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev.12, 1121–1133 (1998). CASPubMedPubMed Central Google Scholar
Chen, D. et al. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nature Med.18, 1511–1517 (2012). CASPubMed Google Scholar
Stauffer, J. K., Scarzello, A. J., Jiang, Q. & Wiltrout, R. H. Chronic inflammation, immune escape, and oncogenesis in the liver: a unique neighborhood for novel intersections. Hepatology56, 1567–1574 (2012). CASPubMed Google Scholar
Staley, B. K. & Irvine, K. D. Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr. Biol.20, 1580–1587 (2010). CASPubMedPubMed Central Google Scholar
Shaw, R. L. et al. The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development137, 4147–4158 (2010). CASPubMedPubMed Central Google Scholar
Karpowicz, P., Perez, J. & Perrimon, N. The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development137, 4135–4145 (2010). CASPubMedPubMed Central Google Scholar
Grusche, F. A., Degoutin, J. L., Richardson, H. E. & Harvey, K. F. The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev. Biol.350, 255–266 (2011). CASPubMed Google Scholar
Sun, G. & Irvine, K. D. Regulation of Hippo signaling by Jun kinase signaling during compensatory cell proliferation and regeneration, and in neoplastic tumors. Dev. Biol.350, 139–151 (2011). CASPubMed Google Scholar
Cai, J. et al. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev.24, 2383–2388 (2010). CASPubMedPubMed Central Google Scholar
Xu, M. Z. et al. Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer115, 4576–4585 (2009). CASPubMed Google Scholar
Wang, Y. et al. Overexpression of yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Cancer Sci.101, 1279–1285 (2010). CASPubMed Google Scholar
Evans, D. G. Neurofibromatosis 2 [Bilateral acoustic neurofibromatosis, central neurofibromatosis, NF2, neurofibromatosis type II]. Genet. Med.11, 599–610 (2009). PubMed Google Scholar
Zender, L. et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell125, 1253–1267 (2006). This paper, and reference 34, presented evidence thatYAP1is an oncogene and is amplified in human tumours. CASPubMedPubMed Central Google Scholar
St John, M. A. et al. Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nature Genet.21, 182–186 (1999). CASPubMed Google Scholar
Zhou, D. et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell16, 425–438 (2009). CASPubMedPubMed Central Google Scholar
Lu, L. et al. Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc. Natl Acad. Sci. USA107, 1437–1442 (2010). CASPubMedPubMed Central Google Scholar
Song, H. et al. Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc. Natl Acad. Sci. USA107, 1431–1436 (2010). CASPubMedPubMed Central Google Scholar
Zhou, D. et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc. Natl Acad. Sci. USA108, e1312–e1320 (2011). CASPubMedPubMed Central Google Scholar
Takahashi, Y. et al. Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin. Cancer Res.11, 1380–1385 (2005). CASPubMed Google Scholar
Jiang, Z. et al. Promoter hypermethylation-mediated down-regulation of LATS1 and LATS2 in human astrocytoma. Neurosci. Res.56, 450–458 (2006). CASPubMed Google Scholar
Seidel, C. et al. Frequent hypermethylation of MST1 and MST2 in soft tissue sarcoma. Mol. Carcinog.46, 865–871 (2007). CASPubMed Google Scholar
Tanas, M. R. et al. Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Sci. Transl. Med.3, 98ra82 (2011). PubMed Google Scholar
Errani, C. et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer50, 644–653 (2011). References 86 and 87 discovered a chromosomal translocation causing the fusion of the genes encoding TAZ and CAMTA1 as the defining genetic lesion in epithelioid haemangioendothelioma. CASPubMedPubMed Central Google Scholar
Irvine, K. D. Integration of intercellular signaling through the Hippo pathway. Semin. Cell Dev. Biol.23, 812–817 (2012). CASPubMedPubMed Central Google Scholar
White, B. D., Chien, A. J. & Dawson, D. W. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology142, 219–232 (2012). CASPubMed Google Scholar
Bellam, N. & Pasche, B. Tgf-β signaling alterations and colon cancer. Cancer Treat. Res.155, 85–103 (2010). CASPubMed Google Scholar
Cohen, D. J. Targeting the hedgehog pathway: role in cancer and clinical implications of its inhibition. Hematol. Oncol. Clin. North Am.26, 565–588 (2012). PubMed Google Scholar
Lobry, C., Oh, P. & Aifantis, I. Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think. J. Exp. Med.208, 1931–1935 (2011). CASPubMedPubMed Central Google Scholar
Imajo, M., Miyatake, K., Iimura, A., Miyamoto, A. & Nishida, E. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling. EMBO J.31, 1109–1122 (2012). CASPubMedPubMed Central Google Scholar
Konsavage, W. M. et al. Wnt/β-catenin signaling regulates Yes-associated protein (YAP) gene expression in colorectal carcinoma cells. J. Biol. Chem.287, 11730–11739 (2012). CASPubMedPubMed Central Google Scholar
Miller, E. et al. Identification of serum-derived sphingosine-1-phosphate as a small molecule regulator of YAP. Chem. Biol.19, 955–962 (2012). CASPubMed Google Scholar
Lin, S. et al. The absence of LPA2 attenuates tumor formation in an experimental model of colitis-associated cancer. Gastroenterology136, 1711–1720 (2009). CASPubMed Google Scholar
Onken, M. D. et al. Oncogenic mutations in GNAQ occur early in uveal melanoma. Invest. Ophthalmol. Vis. Sci.49, 5230–5234 (2008). PubMed Google Scholar
Prickett, T. D. et al. Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma. Nature Genet.43, 1119–1126 (2011). CASPubMed Google Scholar
Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature466, 869–873 (2010). CASPubMed Google Scholar
Van Raamsdonk, C. D. et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature457, 599–602 (2009). CASPubMed Google Scholar
Puca, R., Nardinocchi, L., Givol, D. & D'Orazi, G. Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene29, 4378–4387 (2010). CASPubMed Google Scholar
Poon, C. L., Zhang, X., Lin, J. I., Manning, S. A. & Harvey, K. F. Homeodomain-interacting protein kinase regulates hippo pathway-dependent tissue growth. Curr. Biol.22, 1587–1594 (2012). CASPubMed Google Scholar
Chen, J. & Verheyen, E. M. Homeodomain-interacting protein kinase regulates yorkie activity to promote tissue growth. Curr. Biol.22, 1582–1586 (2012). CASPubMed Google Scholar
Zhang, N. et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Dev. Cell19, 27–38 (2010). This publication proved that YAP is a key driver of tumorigenesis and tissue overgrowth caused by loss ofNf2in the murine liver. CASPubMedPubMed Central Google Scholar
Liu-Chittenden, Y. et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev.26, 1300–1305 (2012). Porphyrin compounds were identified as potential antitumour agents on the basis of their ability to disrupt the interaction of the YAP oncoprotein with the TEAD1–4 transcription factors. CASPubMedPubMed Central Google Scholar
Michels, S. & Schmidt-Erfurth, U. Photodynamic therapy with verteporfin: a new treatment in ophthalmology. Semin. Ophthalmol.16, 201–206 (2001). CASPubMed Google Scholar
Sjogren, B. Regulator of G protein signaling proteins as drug targets: current state and future possibilities. Adv. Pharmacol.62, 315–347 (2011). CASPubMed Google Scholar
Bao, Y. et al. A cell-based assay to screen stimulators of the Hippo pathway reveals the inhibitory effect of dobutamine on the YAP-dependent gene transcription. J. Biochem.150, 199–208 (2011). CASPubMed Google Scholar
Murph, M. & Mills, G. B. Targeting the lipids LPA and S1P and their signalling pathways to inhibit tumour progression. Expert Rev. Mol. Med.9, 1–18 (2007). PubMed Google Scholar
Fleming, J. K., Wojciak, J. M., Campbell, M. A. & Huxford, T. Biochemical and structural characterization of lysophosphatidic Acid binding by a humanized monoclonal antibody. J. Mol. Biol.408, 462–476 (2011). CASPubMedPubMed Central Google Scholar
Wojciak, J. M. et al. The crystal structure of sphingosine-1-phosphate in complex with a Fab fragment reveals metal bridging of an antibody and its antigen. Proc. Natl Acad. Sci. USA106, 17717–17722 (2009). CASPubMedPubMed Central Google Scholar
Ponnusamy, S. et al. Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol. Med.4, 761–775 (2012). CASPubMedPubMed Central Google Scholar
Clair, T. et al. Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate. Cancer Res.63, 5446–5453 (2003). CASPubMed Google Scholar
Umezu-Goto, M. et al. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J. Cell Biol.158, 227–233 (2002). CASPubMedPubMed Central Google Scholar
Stracke, M. L. et al. Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J. Biol. Chem.267, 2524–2529 (1992). CASPubMed Google Scholar
Tanaka, M. et al. Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J. Biol. Chem.281, 25822–25830 (2006). CASPubMed Google Scholar
Xia, P. et al. An oncogenic role of sphingosine kinase. Curr. Biol.10, 1527–1530 (2000). CASPubMed Google Scholar
Van Brocklyn, J. R. et al. Sphingosine kinase-1 expression correlates with poor survival of patients with glioblastoma multiforme: roles of sphingosine kinase isoforms in growth of glioblastoma cell lines. J. Neuropathol. Exp. Neurol.64, 695–705 (2005). CASPubMed Google Scholar
de Souza, P. L. et al. Phase I and pharmacokinetic study of weekly NV06 (Phenoxodiol), a novel isoflav-3-ene, in patients with advanced cancer. Cancer Chemother. Pharmacol.58, 427–433 (2006). PubMed Google Scholar
Kelly, M. G. et al. Phase II evaluation of phenoxodiol in combination with cisplatin or paclitaxel in women with platinum/taxane-refractory/resistant epithelial ovarian, fallopian tube, or primary peritoneal cancers. Int. J. Gynecol. Cancer21, 633–639 (2011). PubMed Google Scholar
Bertini, E., Oka, T., Sudol, M., Strano, S. & Blandino, G. YAP: at the crossroad between transformation and tumor suppression. Cell Cycle8, 49–57 (2009). CASPubMed Google Scholar
Samanta, D. & Datta, P. K. Alterations in the Smad pathway in human cancers. Front. Biosci.17, 1281–1293 (2012). CAS Google Scholar
Barry, E. R. et al. Restriction of intestinal stem cell expansion and the regenerative response by YAP. Nature493, 106–110 (2013). PubMed Google Scholar
Altomare, D. A. et al. A mouse model recapitulating molecular features of human mesothelioma. Cancer Res.65, 8090–8095 (2005). CASPubMed Google Scholar
Giovannini, M. et al. Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev.14, 1617–1630 (2000). CASPubMedPubMed Central Google Scholar
Kalamarides, M. et al. Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev.16, 1060–1065 (2002). CASPubMedPubMed Central Google Scholar
Morris, Z. S. & McClatchey, A. I. Aberrant epithelial morphology and persistent epidermal growth factor receptor signaling in a mouse model of renal carcinoma. Proc. Natl Acad. Sci. USA106, 9767–9772 (2009). CASPubMedPubMed Central Google Scholar
Benhamouche, S. et al. Nf2/Merlin controls progenitor homeostasis and tumorigenesis in the liver. Genes Dev.24, 1718–1730 (2010). CASPubMedPubMed Central Google Scholar
Kim, T. S. et al. Mammalian sterile 20-like kinase 1 (Mst1) suppresses lymphoma development by promoting faithful chromosome segregation. Cancer Res.72, 5386–5395 (2012). CASPubMed Google Scholar
Lee, K. P. et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc. Natl Acad. Sci. USA107, 8248–8253 (2010). CASPubMedPubMed Central Google Scholar
Nishio, M. et al. Cancer susceptibility and embryonic lethality in Mob1a/1b double-mutant mice. J. Clin. Invest.122, 4505–4518 (2012). CASPubMedPubMed Central Google Scholar
Varelas, X. et al. The Hippo pathway regulates Wnt/β-catenin signaling. Dev. Cell18, 579–591 (2010). This paper, together with reference 30, discovered mechanisms of crosstalk between the Hippo and WNT pathways. CASPubMed Google Scholar
Alarcon, C. et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-β pathways. Cell139, 757–769 (2009). CASPubMedPubMed Central Google Scholar
Fernandez, L. A. et al. YAP1 is amplified and up-regulated in hedgehog-associated medulloblastomas and mediates Sonic hedgehog-driven neural precursor proliferation. Genes Dev.23, 2729–2741 (2009). Google Scholar
Tumaneng, K. et al. YAP mediates crosstalk between the Hippo and PI(3)K-TOR pathways by suppressing PTEN via miR-29. Nature Cell Biol.14, 1322–1329 (2012). CASPubMed Google Scholar
Polesello, C. & Tapon, N. Salvador-warts-hippo signaling promotes Drosophila posterior follicle cell maturation downstream of notch. Curr. Biol.17, 1864–1870 (2007). CASPubMed Google Scholar