Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? (original) (raw)
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). ArticleCASPubMed Google Scholar
Tsao, H., Atkins, M. B. & Sober, A. J. Management of cutaneous melanoma. N. Engl. J. Med.351, 998–1012 (2004). ArticleCASPubMed Google Scholar
Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature467, 596–599 (2010). ArticleCASPubMedPubMed Central Google Scholar
Flaherty, K. T. et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N. Engl. J. Med.367, 107–114 (2012). ArticleCASPubMed Google Scholar
Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med.364, 2517–2526 (2011). ArticleCASPubMed Google Scholar
Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med.366, 2455–2465 (2012). ArticleCASPubMedPubMed Central Google Scholar
Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med.366, 2443–2454 (2012). ArticleCASPubMedPubMed Central Google Scholar
Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304, 1497–1500 (2004). ArticleCASPubMed Google Scholar
Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350, 2129–2139 (2004). ArticleCASPubMed Google Scholar
Maemondo, M. et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med.362, 2380–2388 (2010). ArticleCASPubMed Google Scholar
Marusyk, A., Almendro, V. & Polyak, K. Intra-tumour heterogeneity: a looking glass for cancer? Nature Rev. Cancer12, 323–334 (2012). ArticleCAS Google Scholar
Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nature Rev. Cancer6, 924–935 (2006). ArticleCAS Google Scholar
Gerlinger, M. & Swanton, C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br. J. Cancer103, 1139–1143 (2010). ArticleCASPubMedPubMed Central Google Scholar
Gillies, R. J., Verduzco, D. & Gatenby, R. A. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nature Rev. Cancer12, 487–493 (2012). ArticleCAS Google Scholar
Zhou, B. B. et al. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nature Rev. Drug Discov.8, 806–823 (2009). ArticleCAS Google Scholar
Clevers, H. The cancer stem cell: premises, promises and challenges. Nature Med.17, 313–319 (2011). ArticleCASPubMed Google Scholar
Magee, J. A., Piskounova, E. & Morrison, S. J. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell21, 283–296 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ossowski, L. & Aguirre-Ghiso, J. A. Dormancy of metastatic melanoma. Pigment Cell Melanoma Res.23, 41–56 (2010). ArticlePubMed Google Scholar
Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene29, 4741–4751 (2010). ArticleCASPubMedPubMed Central Google Scholar
Baylin, S. B. Resistance, epigenetics and the cancer ecosystem. Nature Med.17, 288–289 (2011). ArticleCASPubMed Google Scholar
Wilting, R. H. & Dannenberg, J. H. Epigenetic mech-anisms in tumorigenesis, tumor cell heterogeneity and drug resistance. Drug Resist. Updat.15, 21–38 (2012). ArticleCASPubMed Google Scholar
Borst, P. Cancer drug pan-resistance: pumps, cancer stem cells, quiescence, epithelial to mesenchymal transition, blocked cell death pathways, persisters or what? Open. Biol.2, 120066 (2012). Google Scholar
Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell18, 884–901 (2010). ArticleCASPubMedPubMed Central Google Scholar
Correia, A. L. & Bissell, M. J. The tumor microenvironment is a dominant force in multidrug resistance. Drug Resist. Updat.15, 39–49 (2012). ArticleCASPubMedPubMed Central Google Scholar
Meads, M. B., Gatenby, R. A. & Dalton, W. S. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nature Rev. Cancer9, 665–674 (2009). ArticleCAS Google Scholar
Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell21, 309–322 (2012). ArticleCASPubMed Google Scholar
Gottesman, M. M., Fojo, T. & Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nature Rev. Cancer2, 48–58 (2002). ArticleCAS Google Scholar
Chabner, B. A. & Roberts, T. G. Jr. Timeline: Chemotherapy and the war on cancer. Nature Rev. Cancer5, 65–72 (2005). ArticleCAS Google Scholar
Wang, T. L. et al. Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc. Natl Acad. Sci. USA101, 3089–3094 (2004). ArticleCASPubMedPubMed Central Google Scholar
Huang, S. et al. MED12 controls the response to multiple cancer drugs through regulation of TGF-β receptor signaling. Cell151, 937–950 (2012). ArticleCASPubMedPubMed Central Google Scholar
Shree, T. et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev.25, 2465–2479 (2011). ArticleCASPubMedPubMed Central Google Scholar
Nakasone, E. S. et al. Imaging tumor-stroma interactions during chemotherapy reveals contributions of the microenvironment to resistance. Cancer Cell21, 488–503 (2012). ArticleCASPubMedPubMed Central Google Scholar
Denardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov.1, 54–67 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kioi, M. et al. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice. J. Clin. Invest.120, 694–705 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bruchard, M. et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nature Med.19, 57–64 (2013). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Med.2, 561–566 (1996). ArticleCASPubMed Google Scholar
Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med.344, 1031–1037 (2001). ArticleCASPubMed Google Scholar
Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science293, 876–880 (2001). ArticleCASPubMed Google Scholar
Soverini, S. et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood118, 1208–1215 (2011). ArticleCASPubMed Google Scholar
Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.352, 786–792 (2005). ArticleCASPubMed Google Scholar
Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med.3, 75ra26 (2011). ArticlePubMedPubMed Central Google Scholar
Rosell, R. et al. Pretreatment EGFR T790M mutation and BRCA1 mRNA expression in erlotinib-treated advanced non-small-cell lung cancer patients with EGFR mutations. Clin. Cancer Res.17, 1160–1168 (2011). ArticleCASPubMed Google Scholar
Su, K. Y. et al. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J. Clin. Oncol.30, 433–440 (2012). ArticleCASPubMed Google Scholar
Prahallad, A. et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature483, 100–103 (2012). ArticleCASPubMed Google Scholar
Corcoran, R. B. et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov.2, 227–235 (2012). ArticleCASPubMedPubMed Central Google Scholar
O'Hare, T., Zabriskie, M. S., Eiring, A. M. & Deininger, M. W. Pushing the limits of targeted therapy in chronic myeloid leukaemia. Nature Rev. Cancer12, 513–526 (2012). ArticleCAS Google Scholar
Whittaker, S. et al. Gatekeeper mutations mediate resistance to BRAF-targeted therapies. Sci. Transl. Med.2, 35ra41 (2010). ArticlePubMedCAS Google Scholar
Poulikakos, P. I. & Rosen, N. Mutant BRAF melanomas--dependence and resistance. Cancer Cell19, 11–15 (2011). ArticleCASPubMed Google Scholar
Villanueva, J. et al. Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer Cell18, 683–695 (2010). ArticleCASPubMedPubMed Central Google Scholar
Das, T. M. et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature494, 251–255 (2013). ArticleCAS Google Scholar
Wilson, T. R. et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature487, 505–509 (2012). ArticleCASPubMedPubMed Central Google Scholar
Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature487, 500–504 (2012). ArticleCASPubMedPubMed Central Google Scholar
Takayama, H., La Rochelle, W. J., Anver, M., Bockman, D. E. & Merlino, G. Scatter factor/hepatocyte growth factor as a regulator of skeletal muscle and neural crest development. Proc. Natl Acad. Sci. USA93, 5866–5871 (1996). ArticleCASPubMedPubMed Central Google Scholar
Takayama, H. et al. Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proc. Natl Acad. Sci. USA94, 701–706 (1997). ArticleCASPubMedPubMed Central Google Scholar
Wang, W. et al. Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin. Cancer Res.15, 6630–6638 (2009). ArticleCASPubMed Google Scholar
Yano, S. et al. Hepatocyte growth factor expression in EGFR mutant lung cancer with intrinsic and acquired resistance to tyrosine kinase inhibitors in a Japanese cohort. J. Thorac. Oncol.6, 2011–2017 (2011). ArticlePubMed Google Scholar
Blattman, J. N. & Greenberg, P. D. Cancer immunotherapy: a treatment for the masses. Science305, 200–205 (2004). ArticleCASPubMed Google Scholar
Rosenberg, S. A. Progress in human tumour immunology and immunotherapy. Nature411, 380–384 (2001). ArticleCASPubMed Google Scholar
Boon, T., Coulie, P. G., Van den Eynde, B. J. & van der, B. P. Human T cell responses against melanoma. Annu. Rev. Immunol.24, 175–208 (2006). ArticleCASPubMed Google Scholar
Atkins, M. B. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol.17, 2105–2116 (1999). ArticleCASPubMed Google Scholar
Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nature Med.10, 909–915 (2004). ArticleCASPubMed Google Scholar
Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science298, 850–854 (2002). ArticleCASPubMedPubMed Central Google Scholar
Yee, C. et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl Acad. Sci. USA99, 16168–16173 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dudley, M. E. et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol.23, 2346–2357 (2005). ArticleCASPubMed Google Scholar
Mackensen, A. et al. Phase I study of adoptive T-cell therapy using antigen-specific CD8+ T cells for the treatment of patients with metastatic melanoma. J. Clin. Oncol.24, 5060–5069 (2006). ArticleCASPubMed Google Scholar
Chapuis, A. G. et al. Transferred melanoma-specific CD8+ T cells persist, mediate tumor regression, and acquire central memory phenotype. Proc. Natl Acad. Sci. USA109, 4592–4597 (2012). ArticleCASPubMedPubMed Central Google Scholar
Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nature Rev. Immunol.12, 269–281 (2012). ArticleCAS Google Scholar
Khong, H. T. & Restifo, N. P. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nature Immunol.3, 999–1005 (2002). ArticleCAS Google Scholar
Restifo, N. P. et al. Loss of functional beta 2-microglobulin in metastatic elanomas from five patients receiving immunotherapy. J. Natl Cancer Inst.88, 100–108 (1996). ArticleCASPubMed Google Scholar
Jager, E. et al. Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int. J. Cancer.71, 142–147 (1997). ArticleCASPubMed Google Scholar
Khong, H. T., Wang, Q. J. & Rosenberg, S. A. Identification of multiple antigens recognized by tumor-infiltrating lymphocytes from a single patient: tumor escape by antigen loss and loss of MHC expression. J. Immunother.27, 184–190 (2004). ArticlePubMedPubMed Central Google Scholar
Garrido, F. Cabrera, T., & Aptsiauri, N. “Hard” and “soft” lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy. Int. J. Cancer.127, 249–256 (2010). CASPubMed Google Scholar
Rosenberg, S. A. et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J. Immunol.175, 6169–6176 (2005). ArticleCASPubMed Google Scholar
Appay, V. et al. New generation vaccine induces effective melanoma-specific CD8+ T cells in the circulation but not in the tumor site. J. Immunol.177, 1670–1678 (2006). ArticleCASPubMed Google Scholar
Baitsch, L. et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J. Clin. Invest.121, 2350–2360 (2011). ArticleCASPubMedPubMed Central Google Scholar
Soudja, S. M. et al. Tumor-initiated inflammation overrides protective adaptive immunity in an induced melanoma model in mice. Cancer Res.70, 3515–3525 (2010). ArticleCASPubMed Google Scholar
Meyer, C. et al. Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model. Proc. Natl Acad. Sci. USA108, 17111–17116 (2011). ArticleCASPubMedPubMed Central Google Scholar
Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Rev. Cancer5, 263–274 (2005). ArticleCAS Google Scholar
Rabinovich, G. A., Gabrilovich, D. & Sotomayor, E. M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol.25, 267–296 (2007). ArticleCASPubMedPubMed Central Google Scholar
Mellor, A. L. & Munn, D. H. Creating immune privilege: active local suppression that benefits friends, but protects foes. Nature Rev. Immunol.8, 74–80 (2008). ArticleCAS Google Scholar
Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science331, 1565–1570 (2011). ArticleCASPubMed Google Scholar
Kohlmeyer, J. et al. Complete regression of advanced primary and metastatic mouse melanomas following combination chemoimmunotherapy. Cancer Res.69, 6265–6274 (2009). ArticleCASPubMed Google Scholar
Landsberg, J. et al. Autochthonous primary and metastatic melanomas in Hgf-Cdk4 R24C mice evade T-cell-mediated immune surveillance. Pigment Cell Melanoma Res.23, 649–660 (2010). ArticleCASPubMed Google Scholar
Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature490, 412–416 (2012). ArticleCASPubMed Google Scholar
Hendrix, M. J., Seftor, E. A., Hess, A. R. & Seftor, R. E. Molecular plasticity of human melanoma cells. Oncogene22, 3070–3075 (2003). ArticleCASPubMed Google Scholar
White, R. M. & Zon, L. I. Melanocytes in development, regeneration, and cancer. Cell Stem Cell.3, 242–252 (2008). ArticleCASPubMed Google Scholar
Bailey, C. M., Morrison, J. A. & Kulesa, P. M. Melanoma revives an embryonic igration program to promote plasticity and invasion. Pigment Cell Melanoma Res.25, 573–583 (2012). ArticleCASPubMedPubMed Central Google Scholar
Quintana, E. et al. Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell18, 510–523 (2010). ArticleCASPubMedPubMed Central Google Scholar
Boiko, A. D. et al. Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature466, 133–137 (2010). ArticleCASPubMedPubMed Central Google Scholar
Civenni, G. et al. Human CD271-positive melanoma stem cells associated with metastasis establish tumor heterogeneity and long-term growth. Cancer Res.71, 3098–3109 (2011). ArticleCASPubMed Google Scholar
Hoek, K. S. et al. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res.68, 650–656 (2008). ArticleCASPubMed Google Scholar
Pinner, S. et al. Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. Cancer Res.69, 7969–7977 (2009). ArticleCASPubMedPubMed Central Google Scholar
Roesch, A. et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell141, 583–594 (2010). ArticleCASPubMedPubMed Central Google Scholar
Javelaud, D. et al. GLI2 and M-MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells. Pigment Cell Melanoma Res.24, 932–943 (2011). ArticleCASPubMed Google Scholar
Cheli, Y. et al. Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny. Oncogene30, 2307–2318 (2011). ArticleCASPubMed Google Scholar
Widmer, D. S. et al. Systematic classification of melanoma cells by phenotype-specific gene expression mapping. Pigment Cell Melanoma Res.25, 343–353 (2012). ArticleCASPubMed Google Scholar
Knutson, K. L. et al. Immunoediting of cancers may lead to epithelial to mesenchymal transition. J. Immunol.177, 1526–1533 (2006). ArticleCASPubMed Google Scholar
Santisteban, M. et al. Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res.69, 2887–2895 (2009). ArticleCASPubMedPubMed Central Google Scholar
Asiedu, M. K., Ingle, J. N., Behrens, M. D., Radisky, D. C. & Knutson, K. L. TGFβ/TNFα-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res.71, 4707–4719 (2011). ArticleCASPubMedPubMed Central Google Scholar
Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell152, 25–38 (2013). ArticleCASPubMed Google Scholar
Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell146, 633–644 (2011). ArticleCASPubMed Google Scholar
Kulbe, H. et al. A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res.72, 66–75 (2012). ArticleCASPubMed Google Scholar
Gray-Schopfer, V. C., Karasarides, M., Hayward, R. & Marais, R. Tumor necrosis factor-alpha blocks apoptosis in melanoma cells when BRAF signaling is inhibited. Cancer Res.67, 122–129 (2007). ArticleCASPubMed Google Scholar
Yao, Z. et al. TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc. Natl Acad. Sci. USA107, 15535–15540 (2010). ArticleCASPubMedPubMed Central Google Scholar
Toh, B. et al. Mesenchymal transition and dissemination of cancer cells is driven by myeloid-derived suppressor cells infiltrating the primary tumor. PLoS. Biol.9, e1001162 (2011). ArticleCASPubMedPubMed Central Google Scholar
Li, G. et al. Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene20, 8125–8135 (2001). ArticleCASPubMed Google Scholar
Koefinger, P. et al. The cadherin switch in melanoma instigated by HGF is mediated through epithelial-mesenchymal transition regulators. Pigment Cell Melanoma Res.24, 382–385 (2011). ArticleCASPubMed Google Scholar
Witta, S. E. et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res.66, 944–950 (2006). ArticleCASPubMed Google Scholar
Creighton, C. J. et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc. Natl Acad. Sci. USA106, 13820–13825 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cheng, W. Y., Kandel, J. J., Yamashiro, D. J., Canoll, P. & Anastassiou, D. A multi-cancer mesenchymal transition gene expression signature is associated with prolonged time to recurrence in glioblastoma. PLoS ONE7, e34705 (2012). ArticleCASPubMedPubMed Central Google Scholar
Zhang, Z. et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nature Genet.44, 852–860 (2012). ArticleCASPubMed Google Scholar
Byers, L. A. et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin. Cancer Res.19, 279–290 (2013). ArticleCASPubMed Google Scholar
Kanno, Y., Vahedi, G., Hirahara, K., Singleton, K. & O'Shea, J. J. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu. Rev. Immunol.30, 707–731 (2012). ArticleCASPubMedPubMed Central Google Scholar
Pylayeva-Gupta, Y., Lee, K. E., Hajdu, C. H., Miller, G. & Bar-Sagi, D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell21, 836–847 (2012). ArticleCASPubMedPubMed Central Google Scholar
Taube, J. M. et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med.4, 127ra37 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Pilon-Thomas, S., Mackay, A., Vohra, N. & Mule, J. J. Blockade of programmed death ligand 1 enhances the therapeutic efficacy of combination immunotherapy against melanoma. J. Immunol.184, 3442–3449 (2010). ArticleCASPubMed Google Scholar
Peng, W. et al. PD-1 blockade enhances T-cell migration to tumors by elevating IFN-gamma inducible chemokines. Cancer Res.72, 5209–5218 (2012). ArticleCASPubMedPubMed Central Google Scholar
Motz, G. T. & Coukos, G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nature Rev. Immunol.11, 702–711 (2011). ArticleCAS Google Scholar
Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature475, 226–230 (2011). ArticleCASPubMed Google Scholar
Hansen, W. et al. Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth. J. Exp. Med.209, 2001–2016 (2012). ArticleCASPubMedPubMed Central Google Scholar
Calcinotto, A. et al. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res.72, 2746–2756 (2012). ArticleCASPubMed Google Scholar
Bakhoum, S. F. & Compton, D. A. Chromosomal instability and cancer: a complex relationship with therapeutic potential. J. Clin. Invest.122, 1138–1143 (2012). ArticleCASPubMedPubMed Central Google Scholar
Miller, B. E., Miller, F. R., Leith, J. & Heppner, G. H. Growth interaction in vivo between tumor subpopulations derived from a single mouse mammary tumor. Cancer Res.40, 3977–3981 (1980). CASPubMed Google Scholar
Axelrod, R., Axelrod, D. E. & Pienta, K. J. Evolution of cooperation among tumor cells. Proc. Natl Acad. Sci. USA103, 13474–13479 (2006). ArticleCASPubMedPubMed Central Google Scholar
Calbo, J. et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell19, 244–256 (2011). ArticleCASPubMed Google Scholar
Mullighan, C. G. et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science322, 1377–1380 (2008). ArticleCASPubMedPubMed Central Google Scholar
Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature469, 356–361 (2011). ArticleCASPubMed Google Scholar
Notta, F. et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature469, 362–367 (2011). ArticleCASPubMed Google Scholar
Colotta, F., Allavena, P., Sica, A., Garlanda, C. & Mantovani, A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis30, 1073–1081 (2009). ArticleCASPubMed Google Scholar
Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med.366, 883–892 (2012). ArticleCASPubMedPubMed Central Google Scholar
Acar, M., Mettetal, J. T. & van, O.A. Stochastic switching as a survival strategy in fluctuating environments. Nature Genet.40, 471–475 (2008). ArticleCASPubMed Google Scholar
Kobus, D., Giesen, Y., Ullrich, R., Backes, H. & Neumaier, B. A fully automated two-step synthesis of an 18F-labelled tyrosine kinase inhibitor for EGFR kinase activity imaging in tumors. Appl. Radiat. Isot.67, 1977–1984 (2009). ArticleCASPubMed Google Scholar
Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA95, 14863–14868 (1998). ArticleCASPubMedPubMed Central Google Scholar
Waddington, C. H. The Strategy of the Genes: a Discussion of Some Aspects of Theoretical Biology (Taylor & Francis, 1957). Google Scholar
Huang, S., Ernberg, I. & Kauffman, S. Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin. Cell Dev. Biol.20, 869–876 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chang, H. H., Hemberg, M., Barahona, M., Ingber, D. E. & Huang, S. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature453, 544–547 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hoek, K. S. & Goding, C. R. Cancer stem cells versus phenotype-switching in melanoma. Pigment Cell Melanoma Res.23, 746–759 (2010). ArticleCASPubMed Google Scholar
Bozic, I. et al. Accumulation of driver and passenger mutations during tumor progression. Proc. Natl Acad. Sci. USA107, 18545–18550 (2010). ArticleCASPubMedPubMed Central Google Scholar
Antal, T. & Krapivsky, P. L. Exact solution of a two-type branching process: models of tumor progression. J. Statist. Mechanics. Theor. Exp.08, P08018 (2011). Google Scholar
Leder, K., Holland, E. C. & Michor, F. The therapeutic implications of plasticity of the cancer stem cell phenotype. PLoS ONE5, e14366 (2010). ArticlePubMedPubMed CentralCAS Google Scholar
Bolker, B. & Pacala, S. W. Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol.52, 179–197 (1997). ArticleCASPubMed Google Scholar
Law, R. & Dieckmann, U. in The Geometry of Ecological Interactions: Simplifying Spatial Complexity (eds Dieckmann, U., Law, R. & Metz, J. A. J.) 252–270 (Cambridge University Press, 2000). Book Google Scholar
Etheridge, A. M. Survival and extinction in a locally regulated population. Ann. Appl. Probab.14, 188–214 (2004). Article Google Scholar
Fournier, N. & Méléard, S. A microscopic probabilistic description of a locally regulated population and macroscopic approximation. Ann. Appl. Probab.14, 1880–1919 (2004). Article Google Scholar
Champagnat, N. A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stoch. Proc. Appl.116, 127–1160 (2006). Google Scholar
Champagnat, N. & Lambert, A. Evolution of discrete populations and the canonical diffusion of adaptive dynamics. Ann. Appl. Probab.17, 102–155 (2007). Article Google Scholar
Champagnat, N. & Méléard, S. Polymorphic evolution sequence and evolutionary branching. Probab. Theor. Relat. Field.151, 45–94 (2011). Article Google Scholar
Clayton, A. & Evans, S. N. Mutation-selection balance with recombination: convergence to equilibrium for polynomial selection costs. SIAM J. Appl. Math69, 1772–1792 (2009). Article Google Scholar
Bovier, A. & Wang, S. D. Multi-time scales in adaptive dynamics: microscopic interpretation of a trait substitution tree model. Preprint at http://arxiv.org/abs/1207.4690 (2012).
Schroeder, T. Long-term single-cell imaging of mammalian stem cells. Nature Methods8, S30–S35 (2011). ArticleCASPubMed Google Scholar
Kastenmuller, W., Torabi-Parizi, P., Subramanian, N., Lammermann, T. & Germain, R. N. A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell150, 1235–1248 (2012). ArticleCASPubMedPubMed Central Google Scholar
Kreso, A. et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science339, 543–548 (2013). ArticleCASPubMed Google Scholar
Shintani, Y. et al. Epithelial to mesenchymal transition is a determinant of sensitivity to chemoradiotherapy in non-small cell lung cancer. Ann. Thorac. Surg.92, 1794–1804 (2011). ArticlePubMed Google Scholar
Uramoto, H., Shimokawa, H., Hanagiri, T., Kuwano, M. & Ono, M. Expression of selected gene for acquired drug resistance to EGFR-TKI in lung adenocarcinoma. Lung Cancer73, 361–365 (2011). ArticlePubMed Google Scholar
Lee, M. J. et al. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell149, 780–794 (2012). ArticleCASPubMedPubMed Central Google Scholar
Klein, C. A. & Holzel, D. Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics. Cell Cycle5, 1788–1798 (2006). ArticleCASPubMed Google Scholar
Haeno, H. et al. Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell148, 362–375 (2012). ArticleCASPubMedPubMed Central Google Scholar
Iwami, S., Haeno, H. & Michor, F. A race between tumor immunoescape and genome maintenance selects for optimum levels of (epi)genetic instability. PLoS. Comput. Biol.8, e1002370 (2012). ArticleCASPubMedPubMed Central Google Scholar