Cohen, P. & Alessi, D. R. Kinase drug discovery — what's next in the field? ACS Chem. Biol.8, 96–104 (2013). ArticleCASPubMed Google Scholar
Ficarro, S. B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol.20, 301–305 (2002). CASPubMed Google Scholar
Cohen, P. The regulation of protein function by multisite phosphorylation — a 25 year update. Trends Biochem. Sci.25, 596–601 (2000). CASPubMed Google Scholar
Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science298, 1912–1934 (2002). CASPubMed Google Scholar
Muller, S., Chaikuad, A., Gray, N. S. & Knapp, S. The ins and outs of selective kinase inhibitor development. Nat. Chem. Biol.11, 818–821 (2015). CASPubMed Google Scholar
Levitzki, A. Protein kinase inhibitors as a therapeutic modality. Acc. Chem. Res.36, 462–469 (2003). CASPubMed Google Scholar
Zhao, Q. et al. Broad-spectrum kinase profiling in live cells with lysine-targeted sulfonyl fluoride probes. J. Am. Chem. Soc.139, 680–685 (2017). This paper describes an in cell competition assay to discern kinase inhibitor selectivity in a physiological context. CASPubMedPubMed Central Google Scholar
Savitski, M. M. et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science346, 1255784 (2014). This paper describes a proteome-wide profiling technique based on the CETSA assay. ArticlePubMed Google Scholar
Aldeghi, M., Heifetz, A., Bodkin, M. J., Knapp, S. & Biggin, P. C. Predictions of ligand selectivity from absolute binding free energy calculations. J. Am. Chem. Soc.139, 946–957 (2017). This article describes an unusually accurate computational method to determine inhibitor selectivity. CASPubMed Google Scholar
Dale, T. et al. A selective chemical probe for exploring the role of CDK8 and CDK19 in human disease. Nat. Chem. Biol.11, 973–980 (2015). CASPubMedPubMed Central Google Scholar
Alexander, P. B. & Wang, X. F. Resistance to receptor tyrosine kinase inhibition in cancer: molecular mechanisms and therapeutic strategies. Front. Med.9, 134–138 (2015). PubMedPubMed Central Google Scholar
Villicana, C., Cruz, G. & Zurita, M. The basal transcription machinery as a target for cancer therapy. Cancer Cell. Int.14, 18 (2014). PubMedPubMed Central Google Scholar
Nie, Z. et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell151, 68–79 (2012). CASPubMedPubMed Central Google Scholar
Kwiatkowski, N. et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature511, 616–620 (2014). This paper demonstrates effective targeting of transcriptional vulnerabilities in cancer via a covalent CDK7 kinase inhibitor. CASPubMedPubMed Central Google Scholar
Christensen, C. L. et al. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell26, 909–922 (2014). CASPubMedPubMed Central Google Scholar
Chipumuro, E. et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell159, 1126–1139 (2014). CASPubMedPubMed Central Google Scholar
Bywater, M. J., Pearson, R. B., McArthur, G. A. & Hannan, R. D. Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat. Rev. Cancer13, 299–314 (2013). CASPubMed Google Scholar
Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell155, 934–947 (2013). CASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell100, 57–70 (2000). CASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). CASPubMed Google Scholar
Loven, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell153, 320–334 (2013). CASPubMedPubMed Central Google Scholar
Hann, S. R. & Eisenman, R. N. Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol. Cell. Biol.4, 2486–2497 (1984). CASPubMedPubMed Central Google Scholar
Herrick, D. J. & Ross, J. The half-life of c-myc mRNA in growing and serum-stimulated cells: influence of the coding and 3' untranslated regions and role of ribosome translocation. Mol. Cell. Biol.14, 2119–2128 (1994). CASPubMedPubMed Central Google Scholar
Posternak, V. & Cole, M. D. Strategically targeting MYC in cancer. F1000Res.5, 408 (2016). Google Scholar
Gonda, T. J. & Ramsay, R. G. Directly targeting transcriptional dysregulation in cancer. Nat. Rev. Cancer15, 686–694 (2015). CASPubMed Google Scholar
Di Vona, C. et al. Chromatin-wide profiling of DYRK1A reveals a role as a gene-specific RNA polymerase II CTD kinase. Mol. Cell57, 506–520 (2015). CASPubMed Google Scholar
Ionescu, A. et al. DYRK1A kinase inhibitors with emphasis on cancer. Mini Rev. Med. Chem.12, 1315–1329 (2012). CASPubMed Google Scholar
Zhou, Y., Shen, J. K., Hornicek, F. J., Kan, Q. & Duan, Z. The emerging roles and therapeutic potential of cyclin-dependent kinase 11 (CDK11) in human cancer. Oncotarget7, 40846–40859 (2016). PubMedPubMed Central Google Scholar
Schachter, M. M. & Fisher, R. P. The CDK-activating kinase Cdk7: taking yes for an answer. Cell Cycle12, 3239–3240 (2013). CASPubMedPubMed Central Google Scholar
Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell153, 320–334 (2013). PubMedPubMed Central Google Scholar
Pelish, H. E. et al. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature526, 273–276 (2015). This paper describes a highly selective natural product inhibitor of CDK8, cortistatin A, which downregulates SE-associated genes in AML. This study also introduces the concept that cancer cells are highly sensitive to SE-controlled gene dosage; both upregulation and downregulation of these genes is toxic. CASPubMedPubMed Central Google Scholar
Clarke, P. et al. Discovery of preclinical development candidate inhibitors of the mediator complex-associated kinases CDK8 and CDK19 and evaluation of their therapeutic potential [abstract]. Cancer Res.76 (Suppl.), 3025 (2016). Google Scholar
Bahr, B. L. et al. Combination strategies to target super enhancer transcriptional activity by CDK9 and BRD4 inhibition in acute myeloid leukemia [abstract]. Cancer Res.75 (Suppl.), 2698 (2015). Google Scholar
Sonawane, Y. A. et al. Cyclin dependent kinase 9 inhibitors for cancer therapy. J. Med. Chem.59, 8667–8684 (2016). CASPubMedPubMed Central Google Scholar
Yin, T. et al. B.; de Dios, A. ; Du, J., A novel CDK9 inhibitor shows potent antitumor efficacy in preclinical hematologic tumor models. Mol. Cancer Ther.13, 1442–1456 (2014). CASPubMed Google Scholar
Lu, H. et al. Compensatory induction of MYC expression by sustained CDK9 inhibition via a BRD4-dependent mechanism. eLife4, e06535 (2015). PubMedPubMed Central Google Scholar
Barsanti, P. A. et al. Pyridine and pyrazine derivatives as protein kinase modulators. US Patent WO2011012661 A1 (2010).
Liang, K. et al. Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing. Mol. Cell. Biol.35, 928–938 (2015). CASPubMedPubMed Central Google Scholar
Zhang, T. et al. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat. Chem. Biol.12, 876–884 (2016). This paper describes an inhibitor that induces a loop rearrangement, enabling covalent inhibition of a distal cysteine by an ATP-competitive inhibitor. CASPubMedPubMed Central Google Scholar
Hamman, K. et al. Targeting the transcriptional kinases CDK12 and CDK13 in breast and ovarian cancer [abstract]. FASEB J.31 (Suppl. 1), 938.9 (2017). Google Scholar
Johnson, S. F. et al. CDK12 inhibition reverses de novo and acquired PARP inhibitor resistance in BRCA wild-type and mutated models of triple-negative breast cancer. Cell Rep.17, 2367–2381 (2016). CASPubMedPubMed Central Google Scholar
Bao, Z. et al. Effectiveness and safety of poly (ADP-ribose) polymerase inhibitors in cancer therapy: a systematic review and meta-analysis. Oncotarget7, 7629–7639 (2016). PubMed Google Scholar
Vinay, D. S. et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin. Cancer Biol.35 (Suppl.), S185–S198 (2015). PubMed Google Scholar
Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med.19, 1423–1437 (2013). CASPubMedPubMed Central Google Scholar
Sukari, A., Nagasaka, M., Al-Hadidi, A. & Lum, L. G. Cancer Immunology and immunotherapy. Anticancer Res.36, 5593–5606 (2016). CASPubMed Google Scholar
Seitz, H. M., Camenisch, T. D., Lemke, G., Earp, H. S. & Matsushima, G. K. Macrophages and dendritic cells use different Axl/Mertk/Tyro3 receptors in clearance of apoptotic cells. J. Immunol.178, 5635–5642 (2007). CASPubMed Google Scholar
Caraux, A. et al. Natural killer cell differentiation driven by Tyro3 receptor tyrosine kinases. Nat. Immunol.7, 747–754 (2006). CASPubMed Google Scholar
Zhang, Z. et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet.44, 852–860 (2012). CASPubMedPubMed Central Google Scholar
Postel-Vinay, S. & Ashworth, A. AXL and acquired resistance to EGFR inhibitors. Nat. Genet.44, 835–836 (2012). CASPubMed Google Scholar
Myers, S. H., Brunton, V. G. & Unciti-Broceta, A. AXL inhibitors in cancer: a medicinal chemistry perspective. J. Med. Chem.59, 3593–3608 (2016). CASPubMed Google Scholar
Paolino, M. et al. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature507, 508–512 (2014). This paper validates TAM kinases as therapeutic targets in cancer, demonstrating that their pharmacological inhibition enhances anti-metastatic NK cell activity. CASPubMedPubMed Central Google Scholar
Putz, E. M. et al. CDK8-mediated STAT1-S727 phosphorylation restrains NK cell cytotoxicity and tumor surveillance. Cell Rep.4, 437–444 (2013). CASPubMedPubMed Central Google Scholar
Johannessen, L. et al. Small-molecule studies identify CDK8 as a regulator of IL-10 in myeloid cells. Nature Chem. Biol.13, 1102–1108 (2017). CAS Google Scholar
Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med.19, 1264–1272 (2013). CASPubMedPubMed Central Google Scholar
Quail, D. F. et al. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science352, aad3018 (2016). References 64 and 65 describe CSF-1R, an anti-inflammatory target in glioma, and demonstrate that tumour microenvironment-mediated resistance can be overcome by combination with IGF-1R or PI3K inhibitors. PubMedPubMed Central Google Scholar
Rommel, C. Taking PI3Kdelta and PI3Kgamma one step ahead: dual active PI3Kdelta/gamma inhibitors for the treatment of immune-mediated inflammatory diseases. Curr. Top. Microbiol. Immunol.346, 279–299 (2010). CASPubMed Google Scholar
Furman, R. R. et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med.370, 997–1007 (2014). CASPubMedPubMed Central Google Scholar
Ali, K. et al. Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature510, 407–411 (2014). CASPubMedPubMed Central Google Scholar
Ferguson, F. M. et al. Discovery of a Series of 5,11-Dihydro-6H-benzo[e]pyrimido[5,4-b][1,4]diazepin-6-ones as Selective PI3K-delta/gamma Inhibitors. ACS Med. Chem. Lett.7, 908–912 (2016). CASPubMedPubMed Central Google Scholar
O'Brien, S. et al. Duvelisib (IPI-145), a PI3K-δ, γ inhibitor, is clinically active in patients with relapsed/refractory chronic lymphocytic leukemia. Blood124, 3334–3334 (2014). Google Scholar
Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med.366, 2455–2465 (2012). CASPubMedPubMed Central Google Scholar
Phan, G. Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl Acad. Sci. USA100, 8372–8377 (2003). CASPubMed Google Scholar
Gong, Y. & Pao, W. EGFR mutant lung cancer. Curr. Top. Microbiol. Immunol.355, 59–81 (2012). CASPubMed Google Scholar
Barouch-Bentov, R. & Sauer, K. Mechanisms of drug-resistance in kinases. Expert Opin. Investig. Drugs20, 153–208 (2011). CASPubMedPubMed Central Google Scholar
Vanneman, M. & Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer12, 237–251 (2012). CASPubMedPubMed Central Google Scholar
Gainor, J. F. et al. EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis. Clin. Cancer Res.22, 4585–4593 (2016). CASPubMedPubMed Central Google Scholar
Shin, D. S. & Ribas, A. The evolution of checkpoint blockade as a cancer therapy: what's here, what's next? Curr. Opin. Immunol.33, 23–35 (2015). CASPubMed Google Scholar
Mahoney, K. M., Rennert, P. D. & Freeman, G. J. Combination cancer immunotherapy and new immuno-modulatory targets. Nat. Rev. Drug Discov.14, 561–584 (2015). CASPubMed Google Scholar
Tchekmedyian, N. et al. Propelling immunotherapy combinations into the clinic. Oncology29, 990–1002 (2015). PubMed Google Scholar
Kaneda, M. M. et al. PI3Kgamma is a molecular switch that controls immune suppression. Nature539, 437–442 (2016). CASPubMedPubMed Central Google Scholar
Schmid, M. C. et al. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kgamma, a single convergent point promoting tumor inflammation and progression. Cancer Cell19, 715–727 (2011). CASPubMedPubMed Central Google Scholar
Diaz-Montero, C. M., Finke, J. & Montero, A. J. Myeloid-derived suppressor cells in cancer: therapeutic, predictive, and prognostic implications. Semin. Oncol.41, 174–184 (2014). CASPubMedPubMed Central Google Scholar
Gebhardt, C. et al. Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab. Clin. Cancer Res.21, 5453–5459 (2015). CASPubMed Google Scholar
De Henau, O. et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells. Nature539, 443–447 (2016). CASPubMedPubMed Central Google Scholar
Evans, C. A. et al. Discovery of a selective phosphoinositide-3-kinase (PI3K)-gamma inhibitor (IPI-549) as an immuno-oncology clinical candidate. ACS Med. Chem. Lett.7, 862–867 (2016). CASPubMedPubMed Central Google Scholar
Ebert, P. J. et al. MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity44, 609–621 (2016). CASPubMed Google Scholar
Serrels, A. et al. Nuclear FAK controls chemokine transcription, Tregs, and evasion of anti-tumor immunity. Cell163, 160–173 (2015). CASPubMedPubMed Central Google Scholar
Stokes, J. B. et al. Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. Mol. Cancer Ther.10, 2135–2145 (2011). CASPubMedPubMed Central Google Scholar
Jiang, H. et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med.22, 851–860 (2016). CASPubMedPubMed Central Google Scholar
Huang, S. H., Li, Y., Zhang, J., Rong, J. & Ye, S. Epidermal growth factor receptor-containing exosomes induce tumor-specific regulatory T cells. Cancer Invest.31, 330–335 (2013). CASPubMed Google Scholar
Ahn, M. J., Sun, J. M., Lee, S. H., Ahn, J. S. & Park, K. EGFR TKI combination with immunotherapy in non-small cell lung cancer. Expert Opin. Drug Safety16, 465–469 (2017). CAS Google Scholar
Akbay, E. A. et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov.3, 1355–1363 (2013). This paper describes the immunosuppressive functions of oncogenic EGFR and demonstrates synergy between EGFR inhibitors and T cell checkpoint inhibitors. CASPubMed Google Scholar
Vladimer, G. I. et al. Global survey of the immuno-modulatory potential of common drugs. Nat. Chem. Biol.13, 681–690 (2017). This paper characterizes the 1,024 FDA-approved drugs in a cell–cell interaction assay and demonstrates that up to 10% have effects on the immune system. CASPubMedPubMed Central Google Scholar
Gould, S. E., Junttila, M. R. & de Sauvage, F. J. Translational value of mouse models in oncology drug development. Nat. Med.21, 431–439 (2015). CASPubMed Google Scholar
Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med.367, 495–507 (2012). CASPubMed Google Scholar
Wollenhaupt, J. et al. Safety and efficacy of tofacitinib, an oral janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, longterm extension studies. J. Rheumatol.41, 837–852 (2014). CASPubMed Google Scholar
Hernandez-Florez, D. & Valor, L. Protein-kinase inhibitors: a new treatment pathway for autoimmune and inflammatory diseases? Rheumatol. Clin.12, 91–99 (2016). Google Scholar
Patterson, H., Nibbs, R., McInnes, I. & Siebert, S. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases. Clin. Exp. Immunol.176, 1–10 (2014). CASPubMedPubMed Central Google Scholar
Villarino, A. V., Kanno, Y. & O'Shea, J. J. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat. Immunol.18, 374–384 (2017). CASPubMed Google Scholar
Schwartz, D. M., Bonelli, M., Gadina, M. & O'Shea, J. J. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat. Rev. Rheumatol.12, 25–36 (2016). This Review summarizes the progress in the field of JAK inhibitors for inflammatory disease. CASPubMed Google Scholar
Kontzias, A., Laurence, A., Gadina, M. & O'Shea, J. J. Kinase inhibitors in the treatment of immune-mediated disease. F1000 Med. Rep.4, 5 (2012). PubMedPubMed Central Google Scholar
Cohen, P. Targeting protein kinases for the development of anti-inflammatory drugs. Curr. Opin. Cell Biol.21, 317–324 (2009). CASPubMed Google Scholar
Weinblatt, M. E. et al. An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid arthritis. N. Engl. J. Med.363, 1303–1312 (2010). CASPubMed Google Scholar
Bahjat, F. R. et al. An orally bioavailable spleen tyrosine kinase inhibitor delays disease progression and prolongs survival in murine lupus. Arthritis Rheum.58, 1433–1444 (2008). CASPubMed Google Scholar
Bajpai, M. Fostamatinib, a Syk inhibitor prodrug for the treatment of inflammatory diseases. IDrugs12, 174–185 (2009). CASPubMed Google Scholar
Gharwan, H. & Groninger, H. Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat. Rev. Clin. Oncol.13, 209–227 (2016). CASPubMed Google Scholar
Rankin, A. L. et al. Selective inhibition of BTK prevents murine lupus and antibody-mediated glomerulo-nephritis. J. Immunol.191, 4540–4550 (2013). CASPubMed Google Scholar
Evans, E. K. et al. Inhibition of Btk with CC-292 provides early pharmacodynamic assessment of activity in mice and humans. J. Pharmacol. Exp. Ther.346, 219–228 (2013). CASPubMed Google Scholar
Crofford, L. J., Nyhoff, L. E., Sheehan, J. H. & Kendall, P. L. The role of Bruton's tyrosine kinase in autoimmunity and implications for therapy. Expert Rev. Clin. Immunol.12, 763–773 (2016). CASPubMedPubMed Central Google Scholar
Wu, H. et al. Irreversible inhibition of BTK kinase by a novel highly selective inhibitor CHMFL-BTK-11 suppresses inflammatory response in rheumatoid arthritis model. Sci. Rep.7, 466 (2017). PubMedPubMed Central Google Scholar
Burger, J. A. Bruton's tyrosine kinase (BTK) inhibitors in clinical trials. Curr. Hematol. Malig. Rep.9, 44–49 (2014). PubMed Google Scholar
Dudhgaonkar, S. et al. Selective IRAK4 inhibition attenuates disease in murine lupus models and demonstrates steroid sparing activity. J. Immunol.198, 1308–1319 (2017). CASPubMed Google Scholar
McElroy, W. T. et al. Potent and selective amidopyrazole inhibitors of IRAK4. ACS Med. Chem. Lett.6, 677–682 (2015). CASPubMedPubMed Central Google Scholar
Rhyasen, G. W. et al. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell24, 90–104 (2013). CASPubMedPubMed Central Google Scholar
Fiore, M., Forli, S. & Manetti, F. Targeting mitogen-activated protein kinase-activated protein kinase 2 (MAPKAPK2, MK2): medicinal chemistry efforts to lead small molecule inhibitors to clinical trials. J. Med. Chem.59, 3609–3634 (2016). CASPubMed Google Scholar
Rommel, C., Camps, M. & Ji, H. PI3K delta and PI3K gamma: partners in crime in inflammation in rheumatoid arthritis and beyond? Nat. Rev. Immunol.7, 191–201 (2007). CASPubMed Google Scholar
Boyle, D. L., Kim, H. R., Topolewski, K., Bartok, B. & Firestein, G. S. Novel phosphoinositide 3-kinase delta, gamma inhibitor: potent anti-inflammatory effects and joint protection in models of rheumatoid arthritis. J. Pharmacol. Exp. Ther.348, 271–280 (2014). PubMed Google Scholar
Winkler, D. G. et al. PI3K-delta and PI3K-gamma inhibition by IPI-145 abrogates immune responses and suppresses activity in autoimmune and inflammatory disease models. Chem. Biol.20, 1364–1374 (2013). CASPubMed Google Scholar
Olbrich, P. et al. Activated PI3Kdelta syndrome type 2: two patients, a novel mutation, and review of the literature. Pediatr. Allergy Immunol.27, 640–644 (2016). PubMed Google Scholar
Hoegenauer, K. et al. Discovery of CDZ173 (leniolisib), representing a structurally novel class of PI3K delta-selective inhibitors. ACS Med. Chem. Lett.8, 975–980 (2017). CASPubMedPubMed Central Google Scholar
Rao, V. K. et al. Effective “activated PI3Kdelta syndrome”-targeted therapy with the PI3Kdelta inhibitor leniolisib. Blood130, 2307–2316 (2017). CASPubMedPubMed Central Google Scholar
Borgel, D. et al. Elevated growth-arrest-specific protein 6 plasma levels in patients with severe sepsis. Crit. Care Med.34, 219–222 (2006). CASPubMed Google Scholar
Broad, A., Jones, D. E. & Kirby, J. A. Toll-like receptor (TLR) response tolerance: a key physiological “damage limitation” effect and an important potential opportunity for therapy. Curr. Med. Chem.13, 2487–2502 (2006). CASPubMed Google Scholar
Corbett, A. et al. Drug repositioning for Alzheimer's disease. Nat. Rev. Drug Discov.11, 833–846 (2012). CASPubMed Google Scholar
McGonigle, P. Animal models of CNS disorders. Biochem. Pharmacol.87, 140–149 (2014). CASPubMed Google Scholar
Horvath, P. et al. Screening out irrelevant cell-based models of disease. Nat. Rev. Drug Discov.15, 751–769 (2016). CASPubMed Google Scholar
Ghosh, R. et al. Allosteric inhibition of the IRE1alpha RNase preserves cell viability and function during endoplasmic reticulum stress. Cell158, 534–548 (2014). This paper validates IRE1α kinase inhibition in models of retinitis pigmentosa and diabetes. CASPubMedPubMed Central Google Scholar
Meredith, E. L. et al. Discovery of oral VEGFR-2 inhibitors with prolonged ocular retention that are efficacious in models of wet age-related macular degeneration. J. Med. Chem.58, 9273–9286 (2015). This paper describes a successful preclinical study of a small-molecule VEGFR2 inhibitor for treatment of wet AMD. CASPubMed Google Scholar
Credle, J. J., Finer-Moore, J. S., Papa, F. R., Stroud, R. M. & Walter, P. On the mechanism of sensing unfolded protein in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA102, 18773–18784 (2005). CASPubMed Google Scholar
Zhou, J. et al. The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proc. Natl Acad. Sci. USA103, 14343–14348 (2006). CASPubMed Google Scholar
Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature415, 92–96 (2002). CASPubMed Google Scholar
Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell107, 881–891 (2001). CASPubMed Google Scholar
Han, D. et al. IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell138, 562–575 (2009). CASPubMedPubMed Central Google Scholar
Shore, G. C., Papa, F. R. & Oakes, S. A. Signaling cell death from the endoplasmic reticulum stress response. Curr. Opin. Cell Biol.23, 143–149 (2011). CASPubMed Google Scholar
Harding, H. P. et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell11, 619–633 (2003). CASPubMed Google Scholar
Moreno, J. A. et al. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci. Transl Med.5, 206ra138 (2013). PubMed Google Scholar
Radford, H., Moreno, J. A., Verity, N., Halliday, M. & Mallucci, G. R. PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta Neuropathol.130, 633–642 (2015). CASPubMedPubMed Central Google Scholar
Axten, J. M. et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J. Med. Chem.55, 7193–7207 (2012). CASPubMed Google Scholar
Larhammar, M. et al. Dual leucine zipper kinase-dependent PERK activation contributes to neuronal degeneration following insult. eLife6, e20725 (2017). PubMedPubMed Central Google Scholar
Patel, S. et al. Scaffold-hopping and structure-based discovery of potent, selective, and brain penetrant N-(1H-Pyrazol-3-yl)pyridin-2-amine inhibitors of dual leucine zipper kinase (DLK. MAP3K12). J. Med. Chem.58, 8182–8199 (2015). CASPubMed Google Scholar
Patel, S. et al. Discovery of dual leucine zipper kinase (DLK, MAP3K12) inhibitors with activity in neurodegeneration models. J. Med. Chem.58, 401–418 (2015). CASPubMed Google Scholar
Ishikawa, M., Jin, D., Sawada, Y., Abe, S. & Yoshitomi, T. Future therapies of wet age-related macular degeneration. J. Ophthalmol.2015, 138070 (2015). PubMedPubMed Central Google Scholar
Appelmann, I., Liersch, R., Kessler, T., Mesters, R. M. & Berdel, W. E. Angiogenesis inhibition in cancer therapy: platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) and their receptors: biological functions and role in malignancy. Recent results in cancer research. Recent Results Cancer Res.180, 51–81 (2010). CASPubMed Google Scholar
Diago, T. Jr. et al., Ranibizumab combined with low-dose sorafenib for exudative age-related macular degeneration. Mayo Clin. Proc.83, 231–234 (2008). PubMedPubMed Central Google Scholar
Slakter, J. S. et al. Phase I/II study of oral pazopanib, a receptor tyrosine kinase inhibitor, in neovascular age related macular degeneration. Invest. Ophthalmol. Visual Sci.53, 2038 (2012). Google Scholar
Liang, C., Brown, D., Chaudhry, N., Elman, M. & Heier, J. Rationale for treating wet AMD in human using an oral pill consisting of a VEGFR/PDGFR inhibitor X-82. Invest. Ophthalmol. Visual Sci.54, 3272–3272 (2013). Google Scholar
Mainolfi, N., Karki, R., Liu, F. & Anderson, K. Evolution of a new class of VEGFR-2 inhibitors from scaffold morphing and redesign. ACS Med. Chem. Lett.7, 363–367 (2016). CASPubMedPubMed Central Google Scholar
Artac, R. A. et al. Neutralization of vascular endothelial growth factor antiangiogenic isoforms is more effective than treatment with proangiogenic isoforms in stimulating vascular development and follicle progression in the perinatal rat ovary. Biol. Reprod.81, 978–988 (2009). CASPubMedPubMed Central Google Scholar
Batson, J. et al. Development of Potent, Selective SRPK1 Inhibitors as Potential Topical Therapeutics for Neovascular Eye Disease. ACS Chem. Biol.12, 825–832 (2017). CASPubMed Google Scholar
Scott, J. D. et al. Discovery of a 3-(4-Pyrimidinyl) indazole (MLi-2), an orally available and selective leucine-rich repeat kinase 2 (LRRK2) inhibitor that reduces brain kinase activity. J. Med. Chem.60, 2983–2992 (2017). CASPubMed Google Scholar
Heffron, T. P. et al. Discovery of clinical development candidate GDC-0084, a brain penetrant inhibitor of PI3K and mTOR. ACS Med. Chem. Lett.7, 351–356 (2016). CASPubMedPubMed Central Google Scholar
Switon, K., Kotulska, K., Janusz-Kaminska, A., Zmorzynska, J. & Jaworski, J. Molecular neurobiology of mTOR. Neuroscience341, 112–153 (2017). CASPubMed Google Scholar
Chan, S. L. & Tan, E. K. Targeting LRRK2 in Parkinson's disease: an update on recent developments. Expert Opin. Ther. Targets21, 601–610 (2017). CASPubMed Google Scholar
Lucet, I. S., Tobin, A., Drewry, D., Wilks, A. F. & Doerig, C. Plasmodium kinases as targets for new-generation antimalarials. Future Med. Chem.4, 2295–2310 (2012). CASPubMed Google Scholar
McNamara, C. W. et al. Targeting Plasmodium PI(4)K to eliminate malaria. Nature504, 248–253 (2013). This thorough study validates PfPI(4)K as an antimalarial target. CASPubMedPubMed Central Google Scholar
Crowther, G. J. et al. Biochemical screening of five protein kinases from Plasmodium falciparum against 14,000 cell-active compounds. PLoS ONE11, e0149996 (2016). PubMedPubMed Central Google Scholar
Carr, J. M., Mahalingam, S., Bonder, C. S. & Pitson, S. M. Sphingosine kinase 1 in viral infections. Rev. Med. Virol.23, 73–84 (2013). CASPubMed Google Scholar
Eisa-Beygi, S. & Wen, X. Y. Could pharmacological curtailment of the RhoA/Rho-kinase pathway reverse the endothelial barrier dysfunction associated with Ebola virus infection? Antiviral Res.114, 53–56 (2015). CASPubMed Google Scholar
Clark, M. J. et al. GNF-2 inhibits dengue virus by targeting Abl kinases and the viral E protein. Cell Chem. Biol.23, 443–452 (2016). CASPubMedPubMed Central Google Scholar
Schreiber, M., Res, I. & Matter, A. Protein kinases as antibacterial targets. Curr. Opin. Cell Biol.21, 325–330 (2009). CASPubMed Google Scholar
Gordon, S., Simithy, J., Goodwin, D. C. & Calderon, A. I. Selective Mycobacterium tuberculosis shikimate kinase inhibitors as potential antibacterials. Persp. Med. Chem.7, 9–20 (2015). Google Scholar
Wang, T. et al. Mtb PKNA/PKNB dual inhibition provides selectivity advantages for inhibitor design to minimize host kinase interactions. ACS Med. Chem. Lett.8, 1224–1229 (2017). CASPubMedPubMed Central Google Scholar
Saleh, D. & Degterev, A. Emerging roles for RIPK1 and RIPK3 in Pathogen-induced cell death and host immunity. Curr. Top. Microbiol. Immunol.403, 37–75 (2017). CASPubMed Google Scholar
Volpe, G., Panuzzo, C., Ulisciani, S. & Cilloni, D. Imatinib resistance in CML. Cancer Lett.274, 1–9 (2009). CASPubMed Google Scholar
Niederst, M. J. & Engelman, J. A. Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Sci. Signal.6, re6 (2013). PubMed Google Scholar
Smyth, L. A. & Collins, I. Measuring and interpreting the selectivity of protein kinase inhibitors. J. Chem. Biol.2, 131–151 (2009). PubMedPubMed Central Google Scholar
Miduturu, C. V. et al. High-Throughput Kinase Profiling: A More Efficient Approach towards the Discovery of New Kinase Inhibitors. Chem. Biol.18, 868–879 (2011). CASPubMedPubMed Central Google Scholar
Cully, M. Rational drug design: Tuning kinase inhibitor residence time. Nat. Rev. Drug Discov.14, 457 (2015). CASPubMed Google Scholar
Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer9, 28–39 (2009). PubMed Google Scholar
Sang, J. et al. Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discov.3, 430–443 (2013). This paper describes EMAP4–ALK as a highly sensitive client of HSP90, which is preferentially degraded upon HSP90 inhibition. CASPubMedPubMed Central Google Scholar
Katayama, R. et al. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc. Natl Acad. Sci. USA108, 7535–7540 (2011). CASPubMed Google Scholar
Richards, M. W. et al. Crystal structure of EML1 reveals the basis for Hsp90 dependence of oncogenic EML4-ALK by disruption of an atypical beta-propeller domain. Proc. Natl Acad. Sci. USA111, 5195–5200 (2014). CASPubMed Google Scholar
Workman, P. & van Montfort, R. EML4-ALK fusions: propelling cancer but creating exploitable chaperone dependence. Cancer Discov.4, 642–645 (2014). CASPubMed Google Scholar
Chen, Z. et al. Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene. Cancer Res.70, 9827–9836 (2010). CASPubMedPubMed Central Google Scholar
Wang, M. et al. Development of heat shock protein (Hsp90) inhibitors to combat resistance to tyrosine kinase inhibitors through Hsp90-kinase interactions. J. Med. Chem.59, 5563–5586 (2016). CASPubMed Google Scholar
Kronke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS. Nature523, 183–188 (2015). This paper uncovers the mechanism of action of lenalidomide in myelodisplastic syndrome. CASPubMedPubMed Central Google Scholar
Petzold, G., Fischer, E. S. & Thoma, N. H. Structural basis of lenalidomide-induced CK1alpha degradation by the CRL4(CRBN) ubiquitin ligase. Nature532, 127–130 (2016). This paper characterizes the structural basis for small-molecule-induced CRBN–CKI-α dimerization, providing rationale for development of molecules hijacking this pathway for induced degradation approaches. CASPubMed Google Scholar
Beke, L. et al. MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells. Biosci. Rep.35, e00267 (2015). PubMedPubMed Central Google Scholar
Kii, I. et al. Selective inhibition of the kinase DYRK1A by targeting its folding process. Nat. Commun.7, 11391 (2016). CASPubMedPubMed Central Google Scholar
Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol.11, 611–617 (2015). CASPubMedPubMed Central Google Scholar
Kritzer, J. New Frontiers in Chemical Biology: Enabling Drug Discovery. Edited by Mark E. Bunnage. ChemMedChem6, 1747–1748 (2011). CAS Google Scholar
Buckley, D. L. & Crews, C. M. Small-molecule control of intracellular protein levels through modulation of the ubiquitin proteasome system. Angew. Chem. Int. Ed.53, 2312–2330 (2014). CAS Google Scholar
Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov.16, 101–114 (2017). This paper provides an extensive and up-to-date review of the PROTAC field. CASPubMed Google Scholar
Toure, M. & Crews, C. M. Small-molecule PROTACS: new approaches to protein degradation. Angew. Chem. Int. Ed.55, 1966–1973 (2016). CAS Google Scholar
Henning, R. K. et al. Degradation of Akt using protein-catalyzed capture agents. J. Pept. Sci.22, 196–200 (2016). CASPubMedPubMed Central Google Scholar
Lai, A. C. et al. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew. Chem. Int. Ed.55, 807–810 (2016). CAS Google Scholar
Hines, J., Gough, J. D., Corson, T. W. & Crews, C. M. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proc. Natl Acad. Sci. USA110, 8942–8947 (2013). CASPubMed Google Scholar
Crew, A. P. et al. Identification and characterization of Von Hippel-Lindau-recruiting proteolysis targeting chimeras (PROTACs) of TANK-binding kinase 1. J. Med. Chem.61, 583–598 (2018). CASPubMed Google Scholar
Robb, C. M. et al. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem. Commun.53, 7577–7580 (2017). CAS Google Scholar
Olson, C. M. et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat. Chem. Biol.14, 163–170 (2018). CASPubMed Google Scholar
Chan, K. H., Zengerle, M., Testa, A. & Ciulli, A. Impact of target warhead and linkage vector on inducing protein degradation: comparison of bromodomain and extra-terminal (BET) degraders derived from triazolodiazepine (JQ1) and tetrahydroquinoline (I-BET726) BET inhibitor scaffolds. J. Med. Chem.61, 504–513 (2018). CASPubMed Google Scholar
Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol.13, 514–521 (2017). CASPubMedPubMed Central Google Scholar
Matyskiela, M. E. et al. Cereblon modulator (CC-220) with improved degradation of Ikaros and Aiolos. J. Med. Chem.61, 535–542 (2018). CASPubMed Google Scholar
Hansen, J. D. et al. Protein degradation via CRL4CRBN ubiquitin ligase: discovery and structure-activity relationships of novel glutarimide analogs that promote degradation of Aiolos and/or GSPT1. J. Med. Chem.61, 492–503 (2018). CASPubMed Google Scholar
Huang, H. T. et al. Chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem. Biol.25, 88–99.e6 (2018). CASPubMed Google Scholar
Bondeson, D. P. et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol.25, 78–87.e5 (2018). CASPubMed Google Scholar
Yang, C. et al. Acquired CDK6 amplification promotes breast cancer resistance to CDK4/6 inhibitors and loss of ER signaling and dependence. Oncogene36, 2255–2264 (2017). CASPubMed Google Scholar
Herrera-Abreu, M. T. et al. Early adaptation and acquired resistance to CDK4/6 inhibition in estrogen receptor-positive breast cancer. Cancer Res.76, 2301–2313 (2016). CASPubMedPubMed Central Google Scholar
Taavi, K. et al. An oral androgen receptor PROTAC degrader for prostate cancer [abstract]. J. Clin. Oncol.35 (Suppl.), 273 (2017). Google Scholar
Leestemaker, Y. et al. Proteasome activation by small molecules. Cell Chem. Biol.24, 725–736.e7 (2017). CASPubMed Google Scholar
Liu, Q. et al. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol.20, 146–159 (2013). PubMedPubMed Central Google Scholar
Fischer, P. M. Approved and experimental small-molecule oncology kinase inhibitor drugs: a mid-2016 overview. Med. Res. Rev.37, 314–367 (2017). PubMed Google Scholar
Strelow, J. M. A Perspective on the Kinetics of Covalent and Irreversible Inhibition. SLAS Discov.22, 3–20 (2017). CASPubMed Google Scholar
Copeland, R. A. Evaluation of enzyme inhibitors in drug discovery. A guide for medicinal chemists and pharmacologists. Methods Biochem. Anal.46, 1–265 (2005). PubMed Google Scholar
Mohutsky, M. & Hall, S. D. Irreversible enzyme inhibition kinetics and drug-drug interactions. Methods Mol. Biol.1113, 57–91 (2014). CASPubMed Google Scholar
Schwartz, P. A. et al. Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance. Proc. Natl Acad. Sci. USA111, 173–178 (2014). CASPubMed Google Scholar
Zaro, B. W., Whitby, L. R., Lum, K. M. & Cravatt, B. F. Metabolically Labile Fumarate Esters Impart Kinetic Selectivity to Irreversible Inhibitors. J. Am. Chem. Soc.138, 15841–15844 (2016). This paper describes a novel cysteine targeting warhead with improved on-target selectivity. CASPubMedPubMed Central Google Scholar
Serafimova, I. M. et al. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat. Chem. Biol.8, 471–476 (2012). CASPubMedPubMed Central Google Scholar
Krishnan, S. et al. Design of reversible, cysteine-targeted Michael acceptors guided by kinetic and computational analysis. J. Am. Chem. Soc.136, 12624–12630 (2014). CASPubMedPubMed Central Google Scholar
Bradshaw, J. M. et al. Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat. Chem. Biol.11, 525–531 (2015). This paper reports a method for rational design of drug residence times via reversible covalent interactions. CASPubMedPubMed Central Google Scholar
Forster, M. et al. Selective JAK3 inhibitors with a covalent reversible binding mode targeting a new induced fit binding pocket. Cell Chem. Biol.23, 1335–1340 (2016). CASPubMedPubMed Central Google Scholar
London, N. et al. Covalent docking of large libraries for the discovery of chemical probes. Nat. Chem. Biol.10, 1066–1072 (2014). CASPubMedPubMed Central Google Scholar
Miller, R. M., Paavilainen, V. O., Krishnan, S., Serafimova, I. M. & Taunton, J. Electrophilic fragment-based design of reversible covalent kinase inhibitors. J. Am. Chem. Soc.135, 5298–5301 (2013). CASPubMedPubMed Central Google Scholar
Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature534, 570–574 (2016). This paper uses reactive fragments to enumerate the targetable cysteine residues in the proteome. CASPubMedPubMed Central Google Scholar
Anscombe, E. et al. Identification and characterization of an irreversible inhibitor of CDK2. Chem. Biol.22, 1159–1164 (2015). CASPubMedPubMed Central Google Scholar
Dalton, S. E. et al. Selectively targeting the kinome-conserved lysine of PI3Kdelta as a general approach to covalent kinase inhibition. J. Am. Chem. Soc.140, 932–939 (2018). CASPubMed Google Scholar
Healy, D. G. et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurol.7, 583–590 (2008). CASPubMedPubMed Central Google Scholar
Greggio, E. & Cookson, M. R. Leucine-rich repeat kinase 2 mutations and Parkinson's disease: three questions. ASN Neuro1, e00002 (2009). PubMedPubMed Central Google Scholar
Kumar, A. & Cookson, M. R. Role of LRRK2 kinase dysfunction in Parkinson disease. Expert Rev. Mol. Med.13, e20 (2011). PubMedPubMed Central Google Scholar
West, A. B. Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease. Exp. Neurol.298, 236–245 (2017). CASPubMedPubMed Central Google Scholar
Lee, K. L. et al. Discovery of clinical candidate 1-{[(2S,3S,4S)-3-Ethyl-4-fluoro-5-oxopyrrolidin-2-yl]methoxy}-7-methoxyisoquinoli ne-6-carboxamide (PF-06650833), a potent, selective inhibitor of interleukin-1 receptor associated kinase 4 (IRAK4), by fragment-based drug design. J. Med. Chem.60, 5521–5542 (2017). CASPubMed Google Scholar
Gomez, N., Erazo, T. & Lizcano, J. M. ERK5 and cell proliferation: nuclear localization is what matters. Front. Cell Dev. Biol.4, 105 (2016). PubMedPubMed Central Google Scholar
Lin, E. C. et al. ERK5 kinase activity is dispensable for cellular immune response and proliferation. Proc. Natl Acad. Sci. USA113, 11865–11870 (2016). CASPubMed Google Scholar
Deng, X. et al. Discovery of a benzo[e]pyrimido-[5,4-b][1,4]diazepin-6(11H)-one as a potent and selective inhibitor of big MAP kinase 1. ACS Med. Chem. Lett.2, 195–200 (2011). CASPubMedPubMed Central Google Scholar
Deng, X. et al. Structural determinants for ERK5 (MAPK7) and leucine rich repeat kinase 2 activities of benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-ones. Eur. J. Med. Chem.70, 758–767 (2013). CASPubMedPubMed Central Google Scholar
Elkins, J. M. et al. X-Ray crystal structure of ERK5 (MAPK7) in complex with a specific inhibitor. J. Med. Chem.56, 4413–4421 (2013). CASPubMedPubMed Central Google Scholar
Berger, S. B. et al. Cutting Edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol.192, 5476–5480 (2014). CASPubMedPubMed Central Google Scholar
Harris, P. A. et al. DNA-encoded library screening identifies benzo[b][1,4]oxazepin-4-ones as highly potent and monoselective receptor interacting protein 1 kinase inhibitors. J. Med. Chem.59, 2163–2178 (2016). CASPubMed Google Scholar
Harris, P. A. et al. Discovery of a first-in-class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases. J. Med. Chem.60, 1247–1261 (2017). CASPubMed Google Scholar
Goldstein, D. M., Gray, N. S. & Zarrinkar, P. P. High-throughput kinase profiling as a platform for drug discovery. Nat. Rev. Drug Discov.7, 391–397 (2008). CASPubMed Google Scholar
Nomura, D. K., Dix, M. M. & Cravatt, B. F. Activity-based protein profiling for biochemical pathway discovery in cancer. Nat. Rev. Cancer10, 630–638 (2010). CASPubMedPubMed Central Google Scholar
Patricelli, M. P. et al. In situ kinase profiling reveals functionally relevant properties of native kinases. Chem. Biol.18, 699–710 (2011). CASPubMedPubMed Central Google Scholar
Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol.25, 1035–1044 (2007). CASPubMed Google Scholar
Medard, G. et al. Optimized chemical proteomics assay for kinase inhibitor profiling. J. Proteome Res.14, 1574–1586 (2015). CASPubMed Google Scholar
Golkowski, M. et al. Kinobead and single-shot LC-MS profiling identifies selective PKD inhibitors. J. Proteome Res.16, 1216–1227 (2017). CASPubMedPubMed Central Google Scholar
Vasta, J. D. et al. Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem. Biol.https://doi.org/10.1016/j.chembiol.2017.10.010 (2017). This paper describes a commercially available, in cell competition assay to discern kinase inhibitor selectivity in a physiological context. PubMedPubMed Central Google Scholar
Munoz, L. Non-kinase targets of protein kinase inhibitors. Nat. Rev. Drug Discov.16, 424–440 (2017). This article is an overview of unexpected off-target activities that have been discovered in kinase inhibitors. CASPubMed Google Scholar
Ciceri, P. et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat. Chem. Biol.10, 305–312 (2014). CASPubMedPubMed Central Google Scholar
Ember, S. W. et al. Acetyl-lysine binding site of bromodomain-containing protein 4 (BRD4) interacts with diverse kinase inhibitors. ACS Chem. Biol.9, 1160–1171 (2014). CASPubMedPubMed Central Google Scholar
Rimassa, L., Bruix, J., Broggini, M. & Santoro, A. Tivantinib (ARQ197) displays cytotoxic activity that is independent of its ability to bind MET — letter. Clin. Cancer Res.19, 4290 (2013). CASPubMed Google Scholar
Katayama, R. et al. Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-MET inhibition. Cancer Res.73, 3087–3096 (2013). CASPubMedPubMed Central Google Scholar
Cheong, J. K. et al. IC261 induces cell cycle arrest and apoptosis of human cancer cells via CK1delta/varepsilon and Wnt/beta-catenin independent inhibition of mitotic spindle formation. Oncogene30, 2558–2569 (2011). CASPubMedPubMed Central Google Scholar
Lanning, B. R. et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors. Nat. Chem. Biol.10, 760–767 (2014). This paper describes pull-down proteomics inhibitor profiling methods for assessing the proteome-wide selectivity of covalent inhibitors. CASPubMedPubMed Central Google Scholar
Niphakis, M. J. & Cravatt, B. F. Enzyme inhibitor discovery by activity-based protein profiling. Annu. Rev. Biochem.83, 341–377 (2014). CASPubMed Google Scholar
Yang, P. & Liu, K. Activity-based protein profiling: recent advances in probe development and applications. Chembiochem16, 712–724 (2015). CASPubMed Google Scholar
Wang, K. et al. Chemistry-based functional proteomics for drug target deconvolution. Expert Rev. Proteom.9, 293–310 (2012). CAS Google Scholar
Martinez Molina, D. et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science341, 84–87 (2013). PubMed Google Scholar
Klaeger, S. et al. Chemical proteomics reveals ferrochelatase as a common off-target of kinase inhibitors. ACS Chem. Biol.11, 1245–1254 (2016). CASPubMed Google Scholar
Reinhard, F. B. et al. Thermal proteome profiling monitors ligand interactions with cellular membrane proteins. Nat. Methods12, 1129–1131 (2015). CASPubMed Google Scholar
Kooistra, A. J. et al. KLIFS: a structural kinase-ligand interaction database. Nucleic Acids Res.44, D365–D371 (2016). CASPubMed Google Scholar
Isberg, V. et al. GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res.44, D356–D364 (2016). CASPubMed Google Scholar
McGuire, R. et al. 3D-e-Chem-VM: structural cheminformatics research infrastructure in a freely available virtual machine. J. Chem. Inform. Model.57, 115–121 (2017). CAS Google Scholar
Lin, X. et al. Life beyond kinases: structure-based discovery of sorafenib as nanomolar antagonist of 5-HT receptors. J. Med. Chem.55, 5749–5759 (2012). CASPubMedPubMed Central Google Scholar
Merget, B., Turk, S., Eid, S., Rippmann, F. & Fulle, S. Profiling prediction of kinase inhibitors: toward the virtual assay. J. Med. Chem.60, 474–485 (2017). CASPubMed Google Scholar
Drewry, D. H. et al. Progress towards a public chemogenomic set for protein kinases and a call for contributions. PLoS ONE12, e0181585 (2017). PubMedPubMed Central Google Scholar
Leelananda, S. P. & Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem.12, 2694–2718 (2016). CASPubMedPubMed Central Google Scholar
Li, Z. & Lazaridis, T. Thermodynamic contributions of the ordered water molecule in HIV-1 protease. J. Am. Chem. Soc.125, 6636–6637 (2003). CASPubMed Google Scholar
Huggins, D. J., Quantifying the entropy of binding for water molecules in protein cavities by computing correlations. Biophys. J.108, 928–936 (2015). CASPubMedPubMed Central Google Scholar
Li, Z. & Lazaridis, T. Computing the thermodynamic contributions of interfacial water. Methods Mol. Biol.819, 393–404 (2012). CASPubMed Google Scholar
Robinson, D. D., Sherman, W. & Farid, R. Understanding kinase selectivity through energetic analysis of binding site waters. ChemMedChem5, 618–627 (2010). CASPubMed Google Scholar
Abel, R., Young, T., Farid, R., Berne, B. J. & Friesner, R. A. Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. J. Am. Chem. Soc.130, 2817–2831 (2008). CASPubMedPubMed Central Google Scholar
Young, T., Abel, R., Kim, B., Berne, B. J. & Friesner, R. A. Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. Proc. Natl Acad. Sci. USA104, 808–813 (2007). CASPubMed Google Scholar
Kitamura, K. et al. Binding free-energy calculation is a powerful tool for drug optimization: calculation and measurement of binding free energy for 7-azaindole derivatives to glycogen synthase kinase-3beta. J. Chem. Inform. Model.54, 1653–1660 (2014). This study is an elegant example of the accuracy of FEP calculations in ranking kinase inhibitors. CAS Google Scholar
Lin, Y. L., Meng, Y., Jiang, W. & Roux, B. Explaining why Gleevec is a specific and potent inhibitor of Abl kinase. Proc. Natl Acad. Sci. USA110, 1664–1669 (2013). CASPubMed Google Scholar
Araki, M. et al. The effect of conformational flexibility on binding free energy estimation between kinases and their inhibitors. J. Chem. Inform. Model.56, 2445–2456 (2016). CAS Google Scholar
Ruiz-Carmona, S. et al. Dynamic undocking and the quasi-bound state as tools for drug discovery. Nat. Chem.9, 201–206 (2017). This paper describes a new method for virtual screening and ranking ligands on the basis of calculations of nonthermodynamic properties. CASPubMed Google Scholar
Takeuchi, K. & Ito, F. Receptor tyrosine kinases and targeted cancer therapeutics. Biol. Pharm. Bull.34, 1774–1780 (2011). CASPubMed Google Scholar
Mushtaq, G. et al. Neuroprotective mechanisms mediated by CDK5 inhibition. Curr. Pharm. Design22, 527–534 (2016). CAS Google Scholar
Narayanan, A. & Jones, L. H. Sulfonyl fluorides as privileged warheads in chemical biology. Chem. Sci.6, 2650–2659 (2015). CASPubMedPubMed Central Google Scholar
Morales-Sanfrutos, J. et al. Vinyl sulfone: a versatile function for simple bioconjugation and immobilization. Org. Biomol. Chem.8, 667–675 (2010). CASPubMed Google Scholar
Garcia, F. J. & Carroll, K. S. Redox-based probes as tools to monitor oxidized protein tyrosine phosphatases in living cells. Eur. J. Med. Chem.88, 28–33 (2014). CASPubMed Google Scholar
Leonard, S. E., Garcia, F. J., Goodsell, D. S. & Carroll, K. S. Redox-based probes for protein tyrosine phosphatases. Angew. Chem. Int. Ed.50, 4423–4427 (2011). CAS Google Scholar
Wani, R. et al. Isoform-specific regulation of Akt by PDGF-induced reactive oxygen species. Proc. Natl Acad. Sci. USA108, 10550–10555 (2011). CASPubMed Google Scholar