The biology and therapeutic targeting of the proprotein convertases (original) (raw)
Puente, X. S., Sanchez, L. M., Overall, C. M. & Lopez-Otin, C. Human and mouse proteases: a comparative genomic approach. Nature Rev. Genet.4, 544–558 (2003). CASPubMed Google Scholar
Long, J. Z. & Cravatt, B. F. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem. Rev.111, 6022–6063 (2011). CASPubMedPubMed Central Google Scholar
Siezen, R. J. & Leunissen, J. A. Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci.6, 501–523 (1997). CASPubMedPubMed Central Google Scholar
Wright, C. S., Alden, R. A. & Kraut, J. Structure of subtilisin BPN' at 2.5 angstrom resolution. Nature221, 235–242 (1969). CASPubMed Google Scholar
Rawlings, N. D., Barrett, A. J. & Bateman, A. MEROPS: the peptidase database. Nucleic Acids Res.38, D227–D233 (2010). CASPubMed Google Scholar
Fuller, R. S., Brake, A. & Thorner, J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc. Natl Acad. Sci. USA86, 1434–1438 (1989). CASPubMed Google Scholar
Seidah, N. G. The proprotein convertases, 20 years later. Methods Mol. Biol.768, 23–57 (2011). This is a historical perspective of the proprotein convertases, from the intensive search that led to their discovery to the present-day understanding of their functions. CASPubMed Google Scholar
Artenstein, A. W. & Opal, S. M. Proprotein convertases in health and disease. N. Engl. J. Med.365, 2507–2518 (2011). CASPubMed Google Scholar
Creemers, J. W. & Khatib, A. M. Knock-out mouse models of proprotein convertases: unique functions or redundancy? Front. Biosci.13, 4960–4971 (2008). CASPubMed Google Scholar
Seidah, N. G. et al. The activation and physiological functions of the proprotein convertases. Int. J. Biochem. Cell Biol.40, 1111–1125 (2008). CASPubMed Google Scholar
Seidah, N. G. What lies ahead for the proprotein convertases? Ann. NY Acad. Sci.1220, 149–161 (2011). CASPubMed Google Scholar
Mesnard, D., Donnison, M., Fuerer, C., Pfeffer, P. L. & Constam, D. B. The microenvironment patterns the pluripotent mouse epiblast through paracrine Furin and Pace4 proteolytic activities. Genes Dev.25, 1871–1880 (2011). CASPubMedPubMed Central Google Scholar
Sakai, J. et al. Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol. Cell2, 505–514 (1998). CASPubMed Google Scholar
Seidah, N. G. et al. Mammalian subtilisin/kexin isozyme SKI-1: a widely expressed proprotein convertase with a unique cleavage specificity and cellular localization. Proc. Natl Acad. Sci. USA96, 1321–1326 (1999). CASPubMed Google Scholar
Rawson, R. B., Cheng, D., Brown, M. S. & Goldstein, J. L. Isolation of cholesterol-requiring mutant Chinese hamster ovary cells with defects in cleavage of sterol regulatory element-binding proteins at site 1. J. Biol. Chem.273, 28261–28269 (1998). CASPubMed Google Scholar
Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell6, 1355–1364 (2000). CASPubMed Google Scholar
Patra, D. et al. Site-1 protease is essential for endochondral bone formation in mice. J. Cell Biol.179, 687–700 (2007). CASPubMedPubMed Central Google Scholar
Gorski, J. P. et al. Inhibition of proprotein convertase SKI-1 blocks transcription of key extracellular matrix genes regulating osteoblastic mineralization. J. Biol. Chem.286, 1836–1849 (2011). CASPubMed Google Scholar
Tassew, N. G., Charish, J., Seidah, N. G. & Monnier, P. P. SKI-1 and Furin generate multiple RGMa fragments that regulate axonal growth. Dev. Cell22, 391–402 (2012). CASPubMed Google Scholar
Marschner, K., Kollmann, K., Schweizer, M., Braulke, T. & Pohl, S. A key enzyme in the biogenesis of lysosomes is a protease that regulates cholesterol metabolism. Science333, 87–90 (2011). CASPubMed Google Scholar
Lenz, O., ter Meulen, J., Klenk, H. D., Seidah, N. G. & Garten, W. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc. Natl Acad. Sci. USA98, 12701–12705 (2001). This was the first report on the broad implication of SKI-1 in the activation of surface glycoproteins of haemorrhagic fever viruses, including Lassa virus and other arenaviruses. CASPubMed Google Scholar
Maxwell, K. N. & Breslow, J. L. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc. Natl Acad. Sci. USA101, 7100–7105 (2004). This work presented the first evidence that PCSK9 enhances the degradation of the LDLR, thereby rationalizing the effect of PCSK9 on the regulation of circulating LDL-C levels. CASPubMed Google Scholar
Benjannet, S. et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J. Biol. Chem.279, 48865–48875 (2004). CASPubMed Google Scholar
Park, S. W., Moon, Y. A. & Horton, J. D. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J. Biol. Chem.279, 50630–50638 (2004). CASPubMed Google Scholar
Steiner, D. F. The proprotein convertases. Curr. Opin. Chem. Biol.2, 31–39 (1998). CASPubMed Google Scholar
Seidah, N. G. & Prat, A. The proprotein convertases are potential targets in the treatment of dyslipidemia. J. Mol. Med.85, 685–696 (2007). CASPubMed Google Scholar
Espenshade, P. J., Cheng, D., Goldstein, J. L. & Brown, M. S. Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins. J. Biol. Chem.274, 22795–22804 (1999). CASPubMed Google Scholar
Seidah, N. G. et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl Acad. Sci. USA100, 928–933 (2003). This was the first report on the discovery of PCSK9. Its high expression in the liver and localization on human chromosome 1p33–34.3, close to that of a major locus (the FH3 locus) for ADH (located at 1p34.1–p32), and its upregulation after partial hepatectomy in a coordinated fashion with apolipoprotein B suggested that it may be implicated in cholesterol regulation. CASPubMed Google Scholar
Seidah, N. G. PCSK9 as a therapeutic target of dyslipidemia. Expert Opin. Ther. Targets13, 19–28 (2009). CASPubMed Google Scholar
Seidah, N. G. & Chretien, M. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res.848, 45–62 (1999). CASPubMed Google Scholar
Turpeinen, H. et al. Identification of proprotein convertase substrates using genome-wide expression correlation analysis. BMC Genomics12, 618 (2011). CASPubMedPubMed Central Google Scholar
Pasquato, A. et al. The proprotein convertase SKI-1/S1P: in vitro analysis of Lassa virus glycoprotein-derived substrates and ex vivo validation of irreversible peptide inhibitors. J. Biol. Chem.281, 23471–23481 (2006). CASPubMed Google Scholar
Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nature Genet.34, 154–156 (2003). This was the first report on the genetic evidence thatPCSK9represents the third locus of ADH.Single point mutations (S127R and F216L) in two French families were shown to be associated with a gain of function of PCSK9. This was the first indication that targeting PCSK9 may be beneficial for the treatment of dyslipidaemia and associated atherosclerosis. CASPubMed Google Scholar
Naureckiene, S. et al. Functional characterization of Narc 1, a novel proteinase related to proteinase K. Arch. Biochem. Biophys.420, 55–67 (2003). CASPubMed Google Scholar
McNutt, M. C., Lagace, T. A. & Horton, J. D. Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J. Biol. Chem.282, 20799–20803 (2007). This was the first evidence that the catalytic activity of PCSK9 is not needed for its functional enhancement of LDLR degradation. CASPubMed Google Scholar
Horton, J. D., Cohen, J. C. & Hobbs, H. H. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem. Sci.32, 71–77 (2007). CASPubMedPubMed Central Google Scholar
Horton, J. D., Cohen, J. C. & Hobbs, H. H. PCSK9: a convertase that coordinates LDL catabolism. J. Lipid Res.50, S172–S177 (2009). PubMedPubMed Central Google Scholar
Hsi, K. L., Seidah, N. G., De Serres, G. & Chretien, M. Isolation and NH2-terminal sequence of a novel porcine anterior pituitary polypeptide. Homology to proinsulin, secretin and Rous sarcoma virus transforming protein TVFV60. FEBS Lett.147, 261–266 (1982). CASPubMed Google Scholar
Mbikay, M., Seidah, N. G. & Chretien, M. Neuroendocrine secretory protein 7B2: structure, expression and functions. Biochem. J.357, 329–342 (2001). CASPubMedPubMed Central Google Scholar
Benjannet, S. et al. Proprotein conversion is determined by a multiplicity of factors including convertase processing, substrate specificity, and intracellular environment. Cell type-specific processing of human prorenin by the convertase PC1. J. Biol. Chem.267, 11417–11423 (1992). CASPubMed Google Scholar
Elagoz, A., Benjannet, S., Mammarbassi, A., Wickham, L. & Seidah, N. G. Biosynthesis and cellular trafficking of the convertase SKI-1/S1P: ectodomain shedding requires SKI-1 activity. J. Biol. Chem.277, 11265–11275 (2002). CASPubMed Google Scholar
Feliciangeli, S. F. et al. Identification of a pH sensor in the furin propeptide that regulates enzyme activation. J. Biol. Chem.281, 16108–16116 (2006). CASPubMedPubMed Central Google Scholar
Basak, A. et al. Enzymic characterization in vitro of recombinant proprotein convertase PC4. Biochem. J.343, 29–37 (1999). CASPubMedPubMed Central Google Scholar
Rousselet, E., Benjannet, S., Hamelin, J., Canuel, M. & Seidah, N. G. The proprotein convertase PC7: unique zymogen activation and trafficking pathways. J. Biol. Chem.286, 2728–2738 (2010). PubMedPubMed Central Google Scholar
Mayer, G. et al. The regulated cell surface zymogen activation of the proprotein convertase PC5A directs the processing of its secretory substrates. J. Biol. Chem.283, 2373–2384 (2008). CASPubMed Google Scholar
Cunningham, D. et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nature Struct. Mol. Biol.14, 413–419 (2007). This study reported the first crystal structure of PCSK9, which revealed the molecular details of the interaction of the prodomain with the catalytic subunit, as well as the topography of the three repeats of the C-terminal Cys-His-rich domain. This work provided the first clue to explain the gain-of-function D374Y mutation and the pH-dependent interaction of PCSK9 with LDLR. CAS Google Scholar
Thomas, G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nature Rev. Mol. Cell Biol.3, 753–766 (2002). CAS Google Scholar
Malide, D., Seidah, N. G., Chretien, M. & Bendayan, M. Electron microscopic immunocytochemical evidence for the involvement of the convertases PC1 and PC2 in the processing of proinsulin in pancreatic β-cells. J. Histochem. Cytochem.43, 11–19 (1995). CASPubMed Google Scholar
Day, R., Schafer, M. K., Watson, S. J., Chretien, M. & Seidah, N. G. Distribution and regulation of the prohormone convertases PC1 and PC2 in the rat pituitary. Mol. Endocrinol.6, 485–497 (1992). CASPubMed Google Scholar
Plaimauer, B. et al. 'Shed' furin: mapping of the cleavage determinants and identification of its C-terminus. Biochem. J.354, 689–695 (2001). CASPubMedPubMed Central Google Scholar
Seidah, N. G. et al. Testicular expression of PC4 in the rat: molecular diversity of a novel germ cell-specific Kex2/subtilisin-like proprotein convertase. Mol. Endocrinol.6, 1559–1570 (1992). CASPubMed Google Scholar
Gyamera-Acheampong, C. et al. Sperm from mice genetically deficient for the PCSK4 proteinase exhibit accelerated capacitation, precocious acrosome reaction, reduced binding to egg zona pellucida, and impaired fertilizing ability. Biol. Reprod.74, 666–673 (2006). CASPubMed Google Scholar
Gyamera-Acheampong, C. & Mbikay, M. Proprotein convertase subtilisin/kexin type 4 in mammalian fertility: a review. Hum. Reprod. Update15, 237–247 (2009). CASPubMed Google Scholar
Lusson, J. et al. cDNA structure of the mouse and rat subtilisin/kexin-like PC5: a candidate proprotein convertase expressed in endocrine and nonendocrine cells. Proc. Natl Acad. Sci. USA90, 6691–6695 (1993). CASPubMed Google Scholar
Essalmani, R. et al. Deletion of the gene encoding proprotein convertase 5/6 causes early embryonic lethality in the mouse. Mol. Cell. Biol.26, 354–361 (2006). CASPubMedPubMed Central Google Scholar
Nakagawa, T. et al. Identification and functional expression of a new member of the mammalian Kex2-like processing endoprotease family: its striking structural similarity to PACE4. J. Biochem.113, 132–135 (1993). CASPubMed Google Scholar
Nakagawa, T., Murakami, K. & Nakayama, K. Identification of an isoform with an extremely large Cys-rich region of PC6, a Kex2-like processing endoprotease. FEBS Lett.327, 165–171 (1993). CASPubMed Google Scholar
Dong, W. et al. Distinct mRNA expression of the highly homologous convertases PC5 and PACE4 in the rat brain and pituitary. J. Neurosci.15, 1778–1796 (1995). CASPubMed Google Scholar
Nour, N. et al. The cysteine-rich domain of the secreted proprotein convertases PC5A and PACE4 functions as a cell surface anchor and interacts with tissue inhibitors of metalloproteinases. Mol. Biol. Cell16, 5215–5226 (2005). CASPubMedPubMed Central Google Scholar
Tsuji, A. et al. Secretory proprotein convertases PACE4 and PC6A are heparin-binding proteins which are localized in the extracellular matrix. Potential role of PACE4 in the activation of proproteins in the extracellular matrix. Biochim. Biophys. Acta1645, 95–104 (2003). CASPubMed Google Scholar
Sun, X., Essalmani, R., Susan-Resiga, D., Prat, A. & Seidah, N. G. Latent TGF-β binding proteins-2 and -3 inhibit the proprotein convertase 5/6A. J. Biol. Chem.286, 29063–29073 (2011). CASPubMedPubMed Central Google Scholar
Seidah, N. G. et al. cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases. Proc. Natl Acad. Sci. USA93, 3388–3393 (1996). CASPubMed Google Scholar
Meerabux, J. et al. A new member of the proprotein convertase gene family (LPC) is located at a chromosome translocation breakpoint in lymphomas. Cancer Res.56, 448–451 (1996). CASPubMed Google Scholar
Constam, D. B., Calfon, M. & Robertson, E. J. SPC4, SPC6, and the novel protease SPC7 are coexpressed with bone morphogenetic proteins at distinct sites during embryogenesis. J. Cell Biol.134, 181–191 (1996). CASPubMed Google Scholar
Rousselet, E., Benjannet, S., Hamelin, J., Canuel, M. & Seidah, N. G. The proprotein convertase PC7: unique zymogen activation and trafficking pathways. J. Biol. Chem.286, 2728–2738 (2011). CASPubMed Google Scholar
Van de Loo, J. W. et al. Biosynthesis, distinct post-translational modifications, and functional characterization of lymphoma proprotein convertase. J. Biol. Chem.272, 27116–27123 (1997). CASPubMed Google Scholar
Xiang, Y., Molloy, S. S., Thomas, L. & Thomas, G. The PC6B cytoplasmic domain contains two acidic clusters that direct sorting to distinct _trans_-Golgi network/endosomal compartments. Mol. Biol. Cell11, 1257–1273 (2000). CASPubMedPubMed Central Google Scholar
Declercq, J., Meulemans, S., Plets, E. & Creemers, J. W. Internalization of the proprotein convertase PC7 from the plasma membrane is mediated by a novel motif. J. Biol. Chem.287, 9052–9060 (2012). CASPubMedPubMed Central Google Scholar
Pullikotil, P., Benjannet, S., Mayne, J. & Seidah, N. G. The proprotein convertase SKI-1/S1P: alternate translation and subcellular localization. J. Biol. Chem.282, 27402–27413 (2007). CASPubMed Google Scholar
Zaid, A. et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology48, 646–654 (2008). CASPubMed Google Scholar
Maxwell, K. N., Fisher, E. A. & Breslow, J. L. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc. Natl Acad. Sci. USA102, 2069–2074 (2005). CASPubMed Google Scholar
Nassoury, N. et al. The cellular trafficking of the secretory proprotein convertase PCSK9 and its dependence on the LDLR. Traffic8, 718–732 (2007). CASPubMed Google Scholar
Kwon, H. J., Lagace, T. A., McNutt, M. C., Horton, J. D. & Deisenhofer, J. Molecular basis for LDL receptor recognition by PCSK9. Proc. Natl Acad. Sci. USA105, 1820–1825 (2008). CASPubMed Google Scholar
Surdo, P. L. et al. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep.12, 1300–1305 (2011). PubMedPubMed Central Google Scholar
Holla, O. L., Strom, T. B., Cameron, J., Berge, K. E. & Leren, T. P. A chimeric LDL receptor containing the cytoplasmic domain of the transferrin receptor is degraded by PCSK9. Mol. Genet. Metab.99, 149–156 (2010). CASPubMed Google Scholar
Strom, T. B. et al. Disrupted recycling of the low density lipoprotein receptor by PCSK9 is not mediated by residues of the cytoplasmic domain. Mol. Genet. Metab.101, 76–80 (2010). CASPubMed Google Scholar
Zhang, D. W., Garuti, R., Tang, W. J., Cohen, J. C. & Hobbs, H. H. Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proc. Natl Acad. Sci. USA105, 13045–13050 (2008). CASPubMed Google Scholar
Poirier, S. et al. Dissection of the endogenous cellular pathways of PCSK9-induced LDLR degradation: evidence for an intracellular route. J. Biol. Chem.284, 28856–28864 (2009). This work demonstrated the existence of the intracellular and extracellular pathways used by PCSK9 to enhance the degradation of LDLR. CASPubMedPubMed Central Google Scholar
Zhang, X. et al. Neuropeptidomic analysis establishes a major role for prohormone convertase-2 in neuropeptide biosynthesis. J. Neurochem.112, 1168–1179 (2010). CASPubMed Google Scholar
Wardman, J. H. et al. Analysis of peptides in prohormone convertase 1/3 null mouse brain using quantitative peptidomics. J. Neurochem.114, 215–225 (2010). CASPubMedPubMed Central Google Scholar
van den Ouweland, A. M., Van Groningen, J. J., Roebroek, A. J., Onnekink, C. & Van de Ven, W. J. Nucleotide sequence analysis of the human fur gene. Nucleic Acids Res.17, 7101–7102 (1989). CASPubMedPubMed Central Google Scholar
Klenk, H. D. & Garten, W. Host cell proteases controlling virus pathogenicity. Trends Microbiol.2, 39–43 (1994). CASPubMed Google Scholar
Garten, W. & Klenk, H. D. Understanding influenza virus pathogenicity. Trends Microbiol.7, 99–100 (1999). CASPubMed Google Scholar
Moulard, M. & Decroly, E. Maturation of HIV envelope glycoprotein precursors by cellular endoproteases. Biochim. Biophys. Acta1469, 121–132 (2000). CASPubMed Google Scholar
Day, P. M. & Schiller, J. T. The role of furin in papillomavirus infection. Future Microbiol.4, 1255–1262 (2009). CASPubMedPubMed Central Google Scholar
Paquet, L. et al. The neuroendocrine precursor 7B2 is a sulfated protein proteolytically processed by a ubiquitous furin-like convertase. J. Biol. Chem.269, 19279–19285 (1994). CASPubMed Google Scholar
Young, J. A. & Collier, R. J. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu. Rev. Biochem.76, 243–265 (2007). CAS Google Scholar
Sucic, J. F., Moehring, J. M., Inocencio, N. M., Luchini, J. W. & Moehring, T. J. Endoprotease PACE4 is Ca2+-dependent and temperature-sensitive and can partly rescue the phenotype of a furin-deficient cell strain. Biochem. J.339, 639–647 (1999). CASPubMedPubMed Central Google Scholar
Gordon, V. M., Klimpel, K. R., Arora, N., Henderson, M. A. & Leppla, S. H. Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect. Immun.63, 82–87 (1995). CASPubMedPubMed Central Google Scholar
Jin, W. et al. Proprotein convertases are responsible for proteolysis and inactivation of endothelial lipase. J. Biol. Chem.280, 36551–36559 (2005). CASPubMed Google Scholar
Essalmani, R. et al. In vivo evidence that furin from hepatocytes inactivates PCSK9. J. Biol. Chem.286, 4257–4263 (2011). CASPubMed Google Scholar
Scamuffa, N. et al. Regulation of prohepcidin processing and activity by the subtilisin-like proprotein convertases furin, PC5, PACE4 and PC7. Gut57, 1573–1582 (2008). CASPubMed Google Scholar
Benjannet, S., Rhainds, D., Hamelin, J., Nassoury, N. & Seidah, N. G. The proprotein convertase PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications. J. Biol. Chem.281, 30561–30572 (2006). This was the first evidence that furin inactivates PCSK9 by cleavage after Arg218↓ and explains the gain-of-function mechanism of the R218S mutant that is resistant to furin. CASPubMed Google Scholar
Henrich, S. et al. The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nature Struct. Biol.10, 520–526 (2003). CASPubMed Google Scholar
Henrich, S., Lindberg, I., Bode, W. & Than, M. E. Proprotein convertase models based on the crystal structures of furin and kexin: explanation of their specificity. J. Mol. Biol.345, 211–227 (2005). This study reported the first crystal structure of furin, which formed the basis for the development of small-molecule inhibitors of furin-like convertases. CASPubMed Google Scholar
Basak, S., Chretien, M., Mbikay, M. & Basak, A. In vitro elucidation of substrate specificity and bioassay of proprotein convertase 4 using intramolecularly quenched fluorogenic peptides. Biochem. J.380, 505–514 (2004). CASPubMedPubMed Central Google Scholar
Essalmani, R. et al. In vivo functions of the proprotein convertase PC5/6 during mouse development: Gdf11 is a likely substrate. Proc. Natl Acad. Sci. USA105, 5750–5755 (2008). CASPubMed Google Scholar
Szumska, D. et al. VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5. Genes Dev.22, 1465–1477 (2008). CASPubMedPubMed Central Google Scholar
Tortorella, M. D. et al. ADAMTS-4 (aggrecanase-1): N-terminal activation mechanisms. Arch. Biochem. Biophys.444, 34–44 (2005). CASPubMed Google Scholar
Liu, J., Afroza, H., Rader, D. J. & Jin, W. Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases. J. Biol. Chem.285, 27561–27570 (2010). CASPubMedPubMed Central Google Scholar
Xiao, Y. et al. Cell-surface processing of extracellular human immunodeficiency virus type 1 Vpr by proprotein convertases. Virology372, 384–397 (2008). CASPubMed Google Scholar
Rousselet, E. et al. The proprotein convertase PC7 enhances the activation of the EGF receptor pathway through processing of the EGF precursor. J. Biol. Chem.286, 9185–9195 (2011). CASPubMedPubMed Central Google Scholar
Oexle, K. et al. Novel association to the proprotein convertase PCSK7 gene locus revealed by analysing soluble transferrin receptor (sTfR) levels. Hum. Mol. Genet.20, 1042–1047 (2011). CASPubMed Google Scholar
Goldstein, J. L., DeBose-Boyd, R. A. & Brown, M. S. Protein sensors for membrane sterols. Cell124, 35–46 (2006). CASPubMed Google Scholar
Llarena, M., Bailey, D., Curtis, H. & O'Hare, P. Different mechanisms of recognition and ER retention by transmembrane transcription factors CREB-H and ATF6. Traffic11, 48–69 (2010). CASPubMed Google Scholar
Seidah, N. G. & Prat, A. Precursor convertases in the secretory pathway, cytosol and extracellular milieu. Essays Biochem.38, 79–94 (2002). CASPubMed Google Scholar
Poirier, S. et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol. Chem.283, 2363–2372 (2008). CASPubMed Google Scholar
Labonte, P. et al. PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression. Hepatology50, 17–24 (2009). This study provided the first evidence that PCSK9 can protect the liver against hepatitis C virus infection by enhancing the degradation of two hepatitis C virus receptors:LDLR and CD81. CASPubMed Google Scholar
Dubuc, G. et al. A new method for measurement of total plasma PCSK9: clinical applications. J. Lipid Res.51, 140–149 (2010). PubMedPubMed Central Google Scholar
Scamuffa, N., Calvo, F., Chretien, M., Seidah, N. G. & Khatib, A. M. Proprotein convertases: lessons from knockouts. FASEB J.20, 1954–1963 (2006). CASPubMed Google Scholar
Seidah, N. G., Khatib, A. M. & Prat, A. The proprotein convertases and their implication in sterol and/or lipid metabolism. Biol. Chem.387, 871–877 (2006). CASPubMed Google Scholar
Zhu, X. et al. Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proc. Natl Acad. Sci. USA99, 10299–10304 (2002). CASPubMed Google Scholar
Furuta, M. et al. Severe defect in proglucagon processing in islet A-cells of prohormone convertase 2 null mice. J. Biol. Chem.276, 27197–27202 (2001). CASPubMed Google Scholar
Dey, A. et al. Furin and prohormone convertase 1/3 are major convertases in the processing of mouse pro-growth hormone-releasing hormone. Endocrinology145, 1961–1971 (2004). CASPubMed Google Scholar
Posner, S. F. et al. Stepwise posttranslational processing of progrowth hormone-releasing hormone (proGHRH) polypeptide by furin and PC1. Endocrine23, 199–213 (2004). CASPubMed Google Scholar
Zhu, X. et al. Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proc. Natl Acad. Sci. USA99, 10293–10298 (2002). CASPubMed Google Scholar
Furuta, M. et al. Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc. Natl Acad. Sci. USA94, 6646–6651 (1997). CASPubMed Google Scholar
Berman, Y. et al. Defective prodynorphin processing in mice lacking prohormone convertase PC2. J. Neurochem.75, 1763–1770 (2000). CASPubMed Google Scholar
Furuta, M. et al. Incomplete processing of proinsulin to insulin accompanied by elevation of Des-31,32 proinsulin intermediates in islets of mice lacking active PC2. J. Biol. Chem.273, 3431–3437 (1998). CASPubMed Google Scholar
Peinado, J. R. et al. Strain-dependent influences on the hypothalamo–pituitary–adrenal axis profoundly affect the 7B2 and PC2 null phenotypes. Endocrinology146, 3438–3444 (2005). CASPubMed Google Scholar
Westphal, C. H. et al. The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing's disease. Cell96, 689–700 (1999). CASPubMed Google Scholar
Jackson, R. S. et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nature Genet.16, 303–306 (1997). This was the first evidence that loss of function of thePCSK1geneis associated with the onset of early childhood obesity. CASPubMed Google Scholar
Farooqi, I. S. et al. Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. J. Clin. Endocrinol. Metab.92, 3369–3373 (2007). CASPubMed Google Scholar
Benzinou, M. et al. Common nonsynonymous variants in PCSK1 confer risk of obesity. Nature Genet.40, 943–945 (2008). CASPubMed Google Scholar
Corpeleijn, E. et al. Obesity-related polymorphisms and their associations with the ability to regulate fat oxidation in obese Europeans: the NUGENOB study. Obesity18, 1369–1377 (2010). CASPubMed Google Scholar
Creemers, J. W. et al. Heterozygous mutations causing partial prohormone convertase 1 deficiency contribute to human obesity. Diabetes61, 383–390 (2012). CASPubMedPubMed Central Google Scholar
Lloyd, D. J., Bohan, S. & Gekakis, N. Obesity, hyperphagia and increased metabolic efficiency in Pc1 mutant mice. Hum. Mol. Genet.15, 1884–1893 (2006). CASPubMed Google Scholar
Roebroek, A. J. et al. Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin. Development125, 4863–4876 (1998). CASPubMed Google Scholar
Constam, D. B. & Robertson, E. J. Tissue-specific requirements for the proprotein convertase furin/SPC1 during embryonic turning and heart looping. Development127, 245–254 (2000). CASPubMed Google Scholar
Susan-Resiga, D. et al. Furin is the major processing enzyme of the cardiac-specific growth factor bone morphogenetic protein 10. J. Biol. Chem.286, 22785–22794 (2011). CASPubMedPubMed Central Google Scholar
Chen, H. et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development131, 2219–2231 (2004). CASPubMedPubMed Central Google Scholar
Roebroek, A. J. et al. Limited redundancy of the proprotein convertase furin in mouse liver. J. Biol. Chem.279, 53442–53450 (2004). This was the first genetic evidence that furin exhibits redundant functions in the liver. CASPubMed Google Scholar
Louagie, E. et al. Role of furin in granular acidification in the endocrine pancreas: identification of the V-ATPase subunit Ac45 as a candidate substrate. Proc. Natl Acad. Sci. USA105, 12319–12324 (2008). CASPubMed Google Scholar
Pesu, M. et al. T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance. Nature455, 246–250 (2008). CASPubMedPubMed Central Google Scholar
De Vos, L. et al. MMTV-cre-mediated fur inactivation concomitant with PLAG1 proto-oncogene activation delays salivary gland tumorigenesis in mice. Int. J. Oncol.32, 1073–1083 (2008). CASPubMed Google Scholar
Mbikay, M. et al. Impaired fertility in mice deficient for the testicular germ-cell protease PC4. Proc. Natl Acad. Sci. USA94, 6842–6846 (1997). This was the first evidence that lack of PC4 results in impaired fertility in male mice, opening the door to the development of contraceptives for males. CASPubMed Google Scholar
Li, M., Mbikay, M., Nakayama, K., Miyata, A. & Arimura, A. Prohormone convertase PC4 processes the precursor of PACAP in the testis. Ann. NY Acad. Sci.921, 333–339 (2000). CASPubMed Google Scholar
Qiu, Q., Basak, A., Mbikay, M., Tsang, B. K. & Gruslin, A. Role of pro-IGF-II processing by proprotein convertase 4 in human placental development. Proc. Natl Acad. Sci. USA102, 11047–11052 (2005). CASPubMed Google Scholar
McPherron, A. C., Lawler, A. M. & Lee, S. J. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nature Genet.22, 260–264 (1999). CASPubMed Google Scholar
Marchesi, C. et al. Inactivation of endothelial proprotein convertase 5/6 decreases collagen deposition in the cardiovascular system: role of fibroblast autophagy. J. Mol. Med.89, 1103–1111 (2011). CASPubMed Google Scholar
Iatan, I. et al. Genetic variation at the proprotein convertase subtilisin/kexin type 5 gene modulates high-density lipoprotein cholesterol levels. Circ. Cardiovasc. Genet.2, 467–475 (2009). CASPubMedPubMed Central Google Scholar
Sun, X., Essalmani, R., Seidah, N. G. & Prat, A. The proprotein convertase PC5/6 is protective against intestinal tumorigenesis: in vivo mouse model. Mol. Cancer8, 73 (2009). PubMedPubMed Central Google Scholar
Constam, D. B. & Robertson, E. J. SPC4/PACE4 regulates a TGFβ signaling network during axis formation. Genes Dev.14, 1146–1155 (2000). CASPubMedPubMed Central Google Scholar
Blanchet, M. H. et al. Cripto recruits Furin and PACE4 and controls Nodal trafficking during proteolytic maturation. EMBO J.27, 2580–2591 (2008). CASPubMedPubMed Central Google Scholar
Scerri, T. S. et al. PCSK6 is associated with handedness in individuals with dyslexia. Hum. Mol. Genet.20, 608–614 (2011). CASPubMed Google Scholar
Constam, D. B. Running the gauntlet: an overview of the modalities of travel employed by the putative morphogen Nodal. Curr. Opin. Genet. Dev.19, 302–307 (2009). CASPubMed Google Scholar
Villeneuve, P. et al. Altered processing of the neurotensin/neuromedin N precursor in PC2 knock down mice: a biochemical and immunohistochemical study. J. Neurochem.82, 783–793 (2002). CASPubMed Google Scholar
Mitchell, K. J. et al. Functional analysis of secreted and transmembrane proteins critical to mouse development. Nature Genet.28, 241–249 (2001). CASPubMed Google Scholar
Schlombs, K., Wagner, T. & Scheel, J. Site-1 protease is required for cartilage development in zebrafish. Proc. Natl Acad. Sci. USA100, 14024–14029 (2003). CASPubMed Google Scholar
Yang, J. et al. Decreased lipid synthesis in livers of mice with disrupted site-1 protease gene. Proc. Natl Acad. Sci. USA98, 13607–13612 (2001). CASPubMed Google Scholar
Patra, D., DeLassus, E., Hayashi, S. & Sandell, L. J. Site-1 protease is essential to growth plate maintenance and is a critical regulator of chondrocyte hypertrophic differentiation in postnatal mice. J. Biol. Chem.286, 29227–29240 (2011). CASPubMedPubMed Central Google Scholar
Rashid, S. et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl Acad. Sci. USA102, 5374–5379 (2005). CASPubMed Google Scholar
Roubtsova, A. et al. Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler. Thromb. Vasc. Biol.31, 785–791 (2011). This is the first evidence that lack of circulating PCSK9 originating from hepatocytes results in adipocyte hypertrophy, in part because of increased levels of the cell surface VLDLR protein. CASPubMed Google Scholar
Denis, M. et al. Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation125, 894–901 (2012). This is the first evidence that lack of PCSK9 protects against the development of atherosclerosis in mice lacking either apolipoprotein E or LDLR. CASPubMed Google Scholar
Herbert, B. et al. Increased secretion of lipoproteins in transgenic mice expressing human D374Y PCSK9 under physiological genetic control. Arterioscler. Thromb. Vasc. Biol.30, 1333–1339 (2010). CASPubMed Google Scholar
Timms, K. M. et al. A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum. Genet.114, 349–353 (2004). CASPubMed Google Scholar
Cohen, J. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nature Genet.37, 161–165 (2005). This was the first evidence that lower levels of PCSK9 are associated with hypocholesterolaemia in individuals exhibiting heterozygous or homozygous loss-of-function mutations. CASPubMed Google Scholar
Kotowski, I. K. et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am. J. Hum. Genet.78, 410–422 (2006). CASPubMedPubMed Central Google Scholar
Bassi, D. E., Fu, J., Lopez, D. C. & Klein-Szanto, A. J. Proprotein convertases: “master switches” in the regulation of tumor growth and progression. Mol. Carcinog.44, 151–161 (2005). CASPubMed Google Scholar
Scamuffa, N. et al. Selective inhibition of proprotein convertases represses the metastatic potential of human colorectal tumor cells. J. Clin. Invest.118, 352–363 (2008). CASPubMed Google Scholar
Couture, F., D'Anjou, F. & Day R. On the cutting edge of proprotein convertase pharmacology: from molecular concepts to clinical applications. Biomol. Concepts2, 421–438 (2011). CASPubMedPubMed Central Google Scholar
Anderson, E. D., Thomas, L., Hayflick, J. S. & Thomas, G. Inhibition of HIV-1 gp160-dependent membrane fusion by a furin-directed α1-antitrypsin variant. J. Biol. Chem.268, 24887–24891 (1993). CASPubMed Google Scholar
Zhong, M. et al. The prosegments of furin and PC7 as potent inhibitors of proprotein convertases. In vitro and ex vivo assessment of their efficacy and selectivity. J. Biol. Chem.274, 33913–33920 (1999). CASPubMed Google Scholar
Khatib, A. M. et al. Inhibition of proprotein convertases is associated with loss of growth and tumorigenicity of HT-29 human colon carcinoma cells: importance of insulin-like growth factor-1 (IGF-1) receptor processing in IGF-1-mediated functions. J. Biol. Chem.276, 30686–30693 (2001). This study showed that inhibition of furin is associated with lower levels of tumour formation owing to the lack of processing of growth factors such as proIGF1. CASPubMed Google Scholar
Lopez, D. C., Bassi, D. E., Zucker, S., Seidah, N. G. & Klein-Szanto, A. J. Human carcinoma cell growth and invasiveness is impaired by the propeptide of the ubiquitous proprotein convertase furin. Cancer Res.65, 4162–4171 (2005). Google Scholar
Bassi, D. E. et al. Proprotein convertase inhibition results in decreased skin cell proliferation, tumorigenesis, and metastasis. Neoplasia12, 516–526 (2010). PubMedPubMed Central Google Scholar
Jiao, G. S. et al. Synthetic small molecule furin inhibitors derived from 2,5-dideoxystreptamine. Proc. Natl Acad. Sci. USA103, 19707–19712 (2006). CASPubMed Google Scholar
Komiyama, T. et al. Inhibition of furin/proprotein convertase-catalyzed surface and intracellular processing by small molecules. J. Biol. Chem.284, 15729–15738 (2009). CASPubMedPubMed Central Google Scholar
Coppola, J. M., Bhojani, M. S., Ross, B. D. & Rehemtulla, A. A small-molecule furin inhibitor inhibits cancer cell motility and invasiveness. Neoplasia10, 363–370 (2008). CASPubMedPubMed Central Google Scholar
Becker, G. L. et al. Potent inhibitors of furin and furin-like proprotein convertases containing decarboxylated P1 arginine mimetics. J. Med. Chem.53, 1067–1075 (2010). CASPubMedPubMed Central Google Scholar
Mercapide, J. et al. Inhibition of furin-mediated processing results in suppression of astrocytoma cell growth and invasiveness. Clin. Cancer Res.8, 1740–1746 (2002). CASPubMed Google Scholar
Lapierre, M. et al. Opposing function of the proprotein convertases furin and PACE4 on breast cancer cells' malignant phenotypes: role of tissue inhibitors of metalloproteinase-1. Cancer Res.67, 9030–9034 (2007). CASPubMed Google Scholar
Dragulescu-Andrasi, A., Liang, G. & Rao, J. In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates. Bioconjug. Chem.20, 1660–1666 (2009). CASPubMedPubMed Central Google Scholar
Mesnard, D. & Constam, D. B. Imaging proprotein convertase activities and their regulation in the implanting mouse blastocyst. J. Cell Biol.191, 129–139 (2010). CASPubMedPubMed Central Google Scholar
Senzer, N. et al. Phase I trial of “bi-shRNAifurin/GMCSF DNA/autologous tumor cell” vaccine (FANG) in advanced cancer. Mol. Ther.20, 679–686 (2012). CASPubMed Google Scholar
Steinman, R. M. Dendritic cells: understanding immunogenicity. Eur. J. Immunol.37, S53–S60 (2007). This was the first report of the application of silencing furin (in primary human tumours isolated from patients with the combined expression of GM-CSF), in the production of tumour vaccines that prolonged the life of patients with cancer. CASPubMed Google Scholar
Zou, T., Satake, A., Ojha, P. & Kambayashi, T. Cellular therapies supplement: the role of granulocyte macrophage colony-stimulating factor and dendritic cells in regulatory T-cell homeostasis and expansion. Transfusion51, 160S–168S (2011). CASPubMedPubMed Central Google Scholar
D'Anjou, F. et al. Molecular validation of PACE4 as a target in prostate cancer. Transl. Oncol.4, 157–172 (2011). PubMedPubMed Central Google Scholar
Komiyama, T., Swanson, J. A. & Fuller, R. S. Protection from anthrax toxin-mediated killing of macrophages by the combined effects of furin inhibitors and chloroquine. Antimicrob. Agents Chemother.49, 3875–3882 (2005). CASPubMedPubMed Central Google Scholar
Ozden, S. et al. Inhibition of Chikungunya virus infection in cultured human muscle cells by furin inhibitors: impairment of the maturation of the E2 surface glycoprotein. J. Biol. Chem.283, 21899–21908 (2008). CASPubMed Google Scholar
Malfait, A. M. et al. Proprotein convertase activation of aggrecanases in cartilage in situ. Arch. Biochem. Biophys.478, 43–51 (2008). CASPubMed Google Scholar
Wylie, J. D., Ho, J. C., Singh, S., McCulloch, D. R. & Apte, S. S. Adamts5 (aggrecanase-2) is widely expressed in the mouse musculoskeletal system and is induced in specific regions of knee joint explants by inflammatory cytokines. J. Orthop. Res.30, 226–233 (2012). CASPubMed Google Scholar
Byun, S. et al. Transport and equilibrium uptake of a peptide inhibitor of PACE4 into articular cartilage is dominated by electrostatic interactions. Arch. Biochem. Biophys.499, 32–39 (2010). CASPubMedPubMed Central Google Scholar
Kowalska, D. et al. Synthetic small-molecule prohormone convertase 2 inhibitors. Mol. Pharmacol.75, 617–625 (2009). CASPubMed Google Scholar
Vivoli, M. et al. Inhibition of prohormone convertases PC1/3 and PC2 by 2,5-dideoxystreptamine derivatives. Mol. Pharmacol.81, 440–454 (2012). CASPubMedPubMed Central Google Scholar
Majumdar, S. et al. Proprotein convertase inhibitory activities of flavonoids isolated from oroxylum indicum. Curr. Med. Chem.17, 2049–2058 (2010). CASPubMed Google Scholar
Pullikotil, P., Vincent, M., Nichol, S. T. & Seidah, N. G. Development of protein-based inhibitors of the proprotein of convertase SKI-1/S1P: processing of SREBP-2, ATF6, and a viral glycoprotein. J. Biol. Chem.279, 17338–17347 (2004). CASPubMed Google Scholar
Hawkins, J. L. et al. Pharmacologic inhibition of site 1 protease activity inhibits sterol regulatory element-binding protein processing and reduces lipogenic enzyme gene expression and lipid synthesis in cultured cells and experimental animals. J. Pharmacol. Exp. Ther.326, 801–808 (2008). CASPubMed Google Scholar
Urata, S. et al. Antiviral activity of a small-molecule inhibitor of arenavirus glycoprotein processing by the cellular site 1 protease. J. Virol.85, 795–803 (2011). CASPubMed Google Scholar
De Windt, A. et al. Gene set enrichment analysis reveals several globally affected pathways due to SKI-1/S1P inhibition in HepG2 cells. DNA Cell Biol.26, 765–772 (2007). CASPubMed Google Scholar
Pasquato, A. et al. Evaluation of the anti-arenaviral activity of the subtilisin kexin isozyme-1/site-1 protease inhibitor PF-429242. Virology423, 14–22 (2012). CASPubMed Google Scholar
Olmstead, A. D., Knecht, W., Lazarov, I., Dixit, S. B. & Jean, F. Human subtilase SKI-1/S1P is a master regulator of the HCV lifecycle and a potential host cell target for developing indirect-acting antiviral agents. PLoS Pathog.8, e1002468 (2012). CASPubMedPubMed Central Google Scholar
Bastianelli, G. et al. Computational reverse-engineering of a spider-venom derived peptide active against Plasmodium falciparum SUB1. PLoS ONE6, e21812 (2011). CASPubMedPubMed Central Google Scholar
Duff, C. J. & Hooper, N. M. PCSK9: an emerging target for treatment of hypercholesterolemia. Expert Opin. Ther. Targets15, 157–168 (2011). CASPubMed Google Scholar
Konrad, R. J., Troutt, J. S. & Cao, G. Effects of currently prescribed LDL-C-lowering drugs on PCSK9 and implications for the next generation of LDL-C-lowering agents. Lipids Health Dis.10, 38 (2011). CASPubMedPubMed Central Google Scholar
Cariou, B., Le, M. C. & Costet, P. Clinical aspects of PCSK9. Atherosclerosis216, 258–265 (2011). CASPubMed Google Scholar
Awan, Z. et al. Rosuvastatin, proprotein convertase subtilisin/kexin type 9 concentrations, and LDL cholesterol response: the JUPITER trial. Clin. Chem.58, 183–189 (2012). CASPubMed Google Scholar
Crunkhorn, S. Trial watch: PCSK9 antibody reduces LDL cholesterol. Nature Rev. Drug Discov.11, 11 (2012). CAS Google Scholar
Davignon, J., Dubuc, G. & Seidah, N. G. The influence of PCSK9 polymorphisms on serum low-density lipoprotein cholesterol and risk of atherosclerosis. Curr. Atheroscler. Rep.12, 308–315 (2010). CASPubMed Google Scholar
Lakoski, S. G., Lagace, T. A., Cohen, J. C., Horton, J. D. & Hobbs, H. H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab.94, 2537–2543 (2009). CASPubMedPubMed Central Google Scholar
Briel, M., Nordmann, A. J. & Bucher, H. C. Statin therapy for prevention and treatment of acute and chronic cardiovascular disease: update on recent trials and metaanalyses. Curr. Opin. Lipidol.16, 601–605 (2005). CASPubMed Google Scholar
Dubuc, G. et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol.24, 1454–1459 (2004). This was the first evidence that statins upregulate levels ofPCSK9mRNA via activation of SREBP2. CASPubMed Google Scholar
Attie, A. D. & Seidah, N. G. Dual regulation of the LDL receptor — some clarity and new questions. Cell Metab.1, 290–292 (2005). CASPubMed Google Scholar
Thompson, J. F. et al. Comprehensive whole-genome and candidate gene analysis for response to statin therapy in the treating to new targets (TNT) cohort. Circ. Cardiovasc. Genet.2, 173–181 (2009). CASPubMed Google Scholar
Naoumova, R. P. et al. Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: long-term follow-up and treatment response. Arterioscler. Thromb. Vasc. Biol.25, 2654–2660 (2005). CASPubMed Google Scholar
Berge, K. E., Ose, L. & Leren, T. P. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler. Thromb. Vasc. Biol.26, 1094–1100 (2006). CASPubMed Google Scholar
Chan, J. C. et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl Acad. Sci. USA106, 9820–9825 (2009). This was the first evidence that an injectable inhibitory mAb can reduce the levels of active PCSK9 in circulation, resulting in a substantial reduction in the levels of LDL-C in mice and non-human primates. This seminal manuscript has led to the wider use of biologics to lower PCSK9 levels. CASPubMed Google Scholar
Ni, Y. G. et al. A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J. Lipid Res.52, 78–86 (2011). CASPubMedPubMed Central Google Scholar
Liang, H. et al. Proprotein convertase substilisin/kexin type 9 antagonism reduces low-density lipoprotein cholesterol in statin-treated hypercholesterolemic nonhuman primates. J. Pharmacol. Exp. Ther.340, 228–236 (2012). CASPubMed Google Scholar
Ni, Y. G. et al. A proprotein convertase subtilisin-like/kexin type 9 (PCSK9) C-terminal domain antibody antigen-binding fragment inhibits PCSK9 internalization and restores low density lipoprotein uptake. J. Biol. Chem.285, 12882–12891 (2010). CASPubMedPubMed Central Google Scholar
McNutt, M. C. et al. Antagonism of secreted PCSK9 increases low-density lipoprotein receptor expression in HEPG2 cells. J. Biol. Chem.284, 10551–10570 (2009). Google Scholar
Frank-Kamenetsky, M. et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl Acad. Sci. USA105, 11915–11920 (2008). This was the first evidence that an injectable RNAi lipidformulation against PCSK9 can reduce the levels of circulating PCSK9 and LDL-C in rodents and non-human primates. CASPubMed Google Scholar
Gupta, N. et al. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS ONE5, e10682 (2010). This was the first evidence that an injectable antisense LNA against PCSK9 can reduce the levels of circulating PCSK9 and LDL-C in mice. PubMedPubMed Central Google Scholar
Lindholm, M. W. et al. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol. Ther.20, 376–381 (2012). CASPubMed Google Scholar
Chretien, M., Seidah, N. G., Basak, A. & Mbikay, M. Proprotein convertases as therapeutic targets. Expert Opin. Ther. Targets12, 1289–1300 (2008). CASPubMed Google Scholar
Mbikay, M., Sirois, F., Yao, J., Seidah, N. G. & Chretien, M. Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours. Br. J. Cancer75, 1509–1514 (1997). CASPubMedPubMed Central Google Scholar
Khatib, A. M., Siegfried, G., Chretien, M., Metrakos, P. & Seidah, N. G. Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. Am. J. Pathol.160, 1921–1935 (2002). CASPubMedPubMed Central Google Scholar
Abifadel, M. et al. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum. Mutat.30, 520–529 (2009). CASPubMed Google Scholar
Li, N. et al. Associations between genetic variations in the FURIN gene and hypertension. BMC Med. Genet.11, 124 (2010). CASPubMedPubMed Central Google Scholar
Ehret, G. B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature478, 103–109 (2011). CASPubMed Google Scholar
Kitamura, K. & Tomita, K. Proteolytic activation of the epithelial sodium channel and therapeutic application of a serine protease inhibitor for the treatment of salt-sensitive hypertension. Clin. Exp. Nephrol.16, 44–48 (2012). CASPubMed Google Scholar
Croissandeau, G. et al. Increased stress-induced analgesia in mice lacking the proneuropeptide convertase PC2. Neurosci. Lett.406, 71–75 (2006). CASPubMed Google Scholar
Espinosa, V. P. et al. Differential regulation of prohormone convertase 1/3, prohormone convertase 2 and phosphorylated cyclic-AMP-response element binding protein by short-term and long-term morphine treatment: implications for understanding the “switch” to opiate addiction. Neuroscience156, 788–799 (2008). CASPubMedPubMed Central Google Scholar
Hallenberger, S. et al. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature360, 358–361 (1992). This was the first evidence that inhibition of furin may lead to the development of a powerful antiviralas it would prevent viral entry (for example, of HIV) by blocking the processing of its surface glycoprotein and hence exposure of its fusiogenic sequence. CASPubMed Google Scholar
Hatta, M., Gao, P., Halfmann, P. & Kawaoka, Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science293, 1840–1842 (2001). CASPubMed Google Scholar
Gordon, V. M., Rehemtulla, A. & Leppla, S. H. A role for PACE4 in the proteolytic activation of anthrax toxin protective antigen. Infect. Immun.65, 3370–3375 (1997). CASPubMedPubMed Central Google Scholar
Abrami, L. et al. The pore-forming toxin proaerolysin is activated by furin. J. Biol. Chem.273, 32656–32661 (1998). CASPubMed Google Scholar
Mbikay, M. et al. PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBS Lett.584, 701–706 (2010). CASPubMed Google Scholar
Seidah, N. G., Day, R., Marcinkiewicz, M., Benjannet, S. & Chretien, M. Mammalian neural and endocrine pro-protein and pro-hormone convertases belonging to the subtilisin family of serine proteinases. Enzyme45, 271–284 (1991). CASPubMed Google Scholar
Seidah, N. G. & Chretien, M. Pro-protein convertases of subtilisin/kexin family. Methods Enzymol.244, 175–188 (1994). CASPubMed Google Scholar
Steiner, D. F. On the discovery of precursor processing. Methods Mol. Biol.768, 3–11 (2011). CASPubMed Google Scholar
Chretien, M. The prohormone theory and the proprotein convertases: it is all about serendipity. Methods Mol. Biol.768, 13–19 (2011). CASPubMed Google Scholar
Mizuno, K., Nakamura, T., Ohshima, T., Tanaka, S. & Matsuo, H. Yeast KEX2 genes encodes an endopeptidase homologous to subtilisin-like serine proteases. Biochem. Biophys. Res. Commun.156, 246–254 (1988). CASPubMed Google Scholar
Julius, D., Brake, A., Blair, L., Kunisawa, R. & Thorner, J. Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-α-factor. Cell37, 1075–1089 (1984). This was the first seminal genetic evidence that yeast contains a protease called kexin that can act as a proprotein convertase. CASPubMed Google Scholar
Van de Ven, W. J. et al. Furin is a subtilisin-like proprotein processing enzyme in higher eukaryotes. Mol. Biol. Rep.14, 265–275 (1990). CASPubMed Google Scholar
Seidah, N. G. et al. cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: tissue-specific mRNAs encoding candidates for pro-hormone processing proteinases. DNA Cell Biol.9, 414–424 (1990). Google Scholar
Smeekens, S. P., Avruch, A. S., LaMendola, J., Chan, S. J. & Steiner, D. F. Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proc. Natl Acad. Sci. USA88, 340–344 (1991). CASPubMed Google Scholar
Smeekens, S. P. & Steiner, D. F. Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. J. Biol. Chem.265, 2997–3000 (1990). CASPubMed Google Scholar
Nakayama, K., Hosaka, M., Hatsuzawa, K. & Murakami, K. Cloning and functional expression of a novel endoprotease involved in prohormone processing at dibasic sites. J. Biochem.109, 803–806 (1991). CASPubMed Google Scholar
Kiefer, M. C. et al. Identification of a second human subtilisin-like protease gene in the fes/fps region of chromosome 15. DNA Cell Biol.10, 757–769 (1991). CASPubMed Google Scholar
Leigh, S. E., Leren, T. P. & Humphries, S. E. Commentary PCSK9 variants: a new database. Atherosclerosis203, 32–33 (2009). CASPubMed Google Scholar
Zhang, L. et al. An anti-PCSK9 antibody reduces LDL-cholesterol on top of a statin and suppresses hepatocyte SREBP-regulated genes. Int. J. Biol. Sci.8, 310–327 (2012). CASPubMedPubMed Central Google Scholar
Stein, E. A. et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N. Engl. J. Med.366, 1108–1118 (2012). CASPubMed Google Scholar
Mayne, J. et al. Novel loss-of-function PCSK9 variant is associated with low plasma LDL cholesterol in a French-Canadian family and with impaired processing and secretion in cell culture. Clin. Chem.57, 1415–1423 (2011). CASPubMed Google Scholar