Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases (original) (raw)
Taylor, C. T. & McElwain, J. C. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology25, 272–279 (2010). CASPubMed Google Scholar
Semenza, G. L. & Wang, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol.12, 5447–5454 (1992). CASPubMedPubMed Central Google Scholar
Wang, G., Jiang, B., Rue, E. & Semenza, G. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl Acad. Sci. USA92, 5510–5514 (1995). CASPubMedPubMed Central Google Scholar
Firth, J. D., Ebert, B. L., Pugh, C. W. & Ratcliffe, P. J. Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3′ enhancer. Proc. Natl Acad. Sci. USA91, 6496–6500 (1994). CASPubMedPubMed Central Google Scholar
Semenza, G. L., Roth, P. H., Fang, H. M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem.269, 23757–23763 (1994). Landmark paper that identified binding of a hypoxia-inducible transcription factor, which binds to the erythropietin promoter and was subsequently named HIF. CASPubMed Google Scholar
Taylor, C. T. Interdependent roles for hypoxia inducible factor and nuclear factor-κB in hypoxic inflammation. J. Physiol.586, 4055–4059 (2008). CASPubMedPubMed Central Google Scholar
Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nature Rev. Mol. Cell Biol.5, 343–354 (2004). CAS Google Scholar
Semenza, G. L. Oxygen sensing, homeostasis, and disease. N. Engl. J. Med.365, 537–547 (2011). CASPubMed Google Scholar
Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion — from mechanism to translation. Nature Med.17, 1391–1401 (2011). CASPubMed Google Scholar
Eltzschig, H. K., Sitkovsky, M. V. & Robson, S. C. Purinergic signaling during inflammation. N. Engl. J. Med.367, 2322–2333 (2012). CASPubMedPubMed Central Google Scholar
Zhang, H. et al. Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. Proc. Natl Acad. Sci. USA105, 19579–19586 (2008). CASPubMedPubMed Central Google Scholar
Kaelin, W. G. Jr & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell30, 393–402 (2008). CASPubMed Google Scholar
Semenza, G. L. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology24, 97–106 (2009). CASPubMed Google Scholar
Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature399, 271–275 (1999). CASPubMed Google Scholar
Tanimoto, K., Makino, Y., Pereira, T. & Poellinger, L. Mechanism of regulation of the hypoxia-inducible factor-1α by the von Hippel-Lindau tumor suppressor protein. EMBO J.19, 4298–4309 (2000). CASPubMedPubMed Central Google Scholar
Epstein, A. C. et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell107, 43–54 (2001). Landmark paper that identified mammalian PHDs in their functional role of regulating the stability of HIF. CASPubMed Google Scholar
Jaakkola, P. et al. Targeting of HIF-α to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science292, 468–472 (2001). CASPubMed Google Scholar
Lando, D., Peet, D. J., Whelan, D. A., Gorman, J. J. & Murray, L. W. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science295, 858–861 (2002). CASPubMed Google Scholar
Ema, M. et al. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1α regulates the VEGF expression and is potentially involved in lung and vascular development. Proc. Natl Acad. Sci. USA94, 4273–4278 (1997). CASPubMedPubMed Central Google Scholar
Gu, Y. Z., Moran, S. M., Hogenesch, J. B., Wartman, L. & Bradfield, C. A. Molecular characterization and chromosomal localization of a third α-class hypoxia inducible factor subunit, HIF3α. Gene Expr.7, 205–213 (1998). CASPubMed Google Scholar
Makino, Y., Kanopka, A., Wilson, W. J., Tanaka, H. & Poellinger, L. Inhibitory PAS domain protein (IPAS) is a hypoxia-inducible splicing variant of the hypoxia-inducible factor-3α locus. J. Biol. Chem.277, 32405–32408 (2002). CASPubMed Google Scholar
Makino, Y. et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature414, 550–554 (2001). CASPubMed Google Scholar
Bruick, R. K. Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev.17, 2614–2623 (2003). CASPubMed Google Scholar
Boh, B. K., Smith, P. G. & Hagen, T. Neddylation-induced conformational control regulates cullin RING ligase activity in vivo. J. Mol. Biol.409, 136–145 (2011). CASPubMed Google Scholar
Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature458, 732–736 (2009). CASPubMed Google Scholar
Khoury, J., Ibla, J. C., Neish, A. S. & Colgan, S. P. Antiinflammatory adaptation to hypoxia through adenosine-mediated cullin-1 deneddylation. J. Clin. Invest.117, 703–711 (2007). CASPubMedPubMed Central Google Scholar
Ehrentraut, S. F. et al. Central role for endothelial human deneddylase-1/SENP8 in fine-tuning the vascular inflammatory response. J. Immunol.190, 392–400 (2013). CASPubMed Google Scholar
Colgan, S. P. & Eltzschig, H. K. Adenosine and hypoxia-inducible factor signaling in intestinal injury and recovery. Annu. Rev. Physiol.74, 153–175 (2012). CASPubMed Google Scholar
Colgan, S. P. & Taylor, C. T. Hypoxia: an alarm signal during intestinal inflammation. Nature Rev. Gastroenterol. Hepatol7, 281–287 (2010). Google Scholar
Karhausen, J. O. et al. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Invest.114, 1098–1106 (2004). CASPubMedPubMed Central Google Scholar
Clambey, E. T. et al. Hypoxia-inducible factor-1α-dependent induction of FoxP3 drives regulatory T-cell abundance and function during inflammatory hypoxia of the mucosa. Proc. Natl Acad. Sci. USA109, E2784–E2793 (2012). CASPubMedPubMed Central Google Scholar
Peyssonnaux, C. et al. Cutting edge: essential role of hypoxia inducible factor-1α in development of lipopolysaccharide-induced sepsis. J. Immunol.178, 7516–7519 (2007). CASPubMed Google Scholar
Kuhlicke, J., Frick, J. S., Morote-Garcia, J. C., Rosenberger, P. & Eltzschig, H. K. Hypoxia inducible factor (HIF)-1 coordinates induction of Toll-like receptors TLR2 and TLR6 during hypoxia. PLoS ONE2, e1364 (2007). PubMedPubMed Central Google Scholar
Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature496, 238–242 (2013). CASPubMedPubMed Central Google Scholar
Werth, N. et al. Activation of hypoxia inducible factor 1 is a general phenomenon in infections with human pathogens. PLoS ONE5, e11576 (2010). PubMedPubMed Central Google Scholar
Hartmann, H. et al. Hypoxia-independent activation of HIF-1 by enterobacteriaceae and their siderophores. Gastroenterology134, 756–767 (2008). CASPubMed Google Scholar
Kempf, V. A. et al. Activation of hypoxia-inducible factor-1 in bacillary angiomatosis: evidence for a role of hypoxia-inducible factor-1 in bacterial infections. Circulation111, 1054–1062 (2005). CASPubMed Google Scholar
Haeberle, H. A. et al. Oxygen-independent stabilization of hypoxia inducible factor (HIF)-1 during RSV infection. PLoS ONE3, e3352 (2008). PubMedPubMed Central Google Scholar
Nizet, V. & Johnson, R. S. Interdependence of hypoxic and innate immune responses. Nature Rev. Immunol.9, 609–617 (2009). CAS Google Scholar
Peyssonnaux, C. et al. HIF-1α expression regulates the bactericidal capacity of phagocytes. J. Clin. Invest.115, 1806–1815 (2005). CASPubMedPubMed Central Google Scholar
Rius, J. et al. NF-κB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature453, 807–811 (2008). CASPubMedPubMed Central Google Scholar
Grocott, M. P. et al. Arterial blood gases and oxygen content in climbers on Mount Everest. N. Engl. J. Med.360, 140–149 (2009). CASPubMed Google Scholar
Hartmann, G. et al. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine12, 246–252 (2000). CASPubMed Google Scholar
Synnestvedt, K. et al. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J. Clin. Invest.110, 993–1002 (2002). CASPubMedPubMed Central Google Scholar
Schmit, M. A. et al. Vasodilator phosphostimulated protein (VASP) protects endothelial barrier function during hypoxia. Inflammation35, 566–573 (2012). CASPubMed Google Scholar
Cummins, E. P. et al. Prolyl hydroxylase-1 negatively regulates IκB kinase-β, giving insight into hypoxia-induced NFκB activity. Proc. Natl Acad. Sci. USA103, 18154–18159 (2006). An important study that identified a functional role of PHDs in the stabilization of nuclear factor κB under hypoxic conditions. CASPubMedPubMed Central Google Scholar
Campbell, E. L. et al. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity40, 66–77 (2014). CASPubMedPubMed Central Google Scholar
Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature448, 427–434 (2007). CASPubMed Google Scholar
Marks, D. J., Rahman, F. Z., Sewell, G. W. & Segal, A. W. Crohn's disease: an immune deficiency state. Clin. Rev. Allergy Immunol.38, 20–31 (2010). CASPubMedPubMed Central Google Scholar
Taylor, C. T. & Colgan, S. P. Hypoxia and gastrointestinal disease. J. Mol. Med.85, 1295–1300 (2007). PubMed Google Scholar
Huang, J. S. et al. Chronic granulomatous disease caused by a deficiency in p47(phox) mimicking Crohn's disease. Clin. Gastroenterol. Hepatol.2, 690–695 (2004). CASPubMed Google Scholar
Hart, M. L. et al. Hypoxia-inducible factor-1α-dependent protection from intestinal ischemia/reperfusion injury involves ecto-5′-nucleotidase (CD73) and the A2B adenosine receptor. J. Immunol.186, 4367–4374 (2011). CASPubMed Google Scholar
Xue, X. et al. Endothelial PAS domain protein 1 activates the inflammatory response in the intestinal epithelium to promote colitis in mice. Gastroenterology145, 831–841 (2013). CASPubMed Google Scholar
Tambuwala, M. M. et al. Loss of prolyl hydroxylase-1 protects against colitis through reduced epithelial cell apoptosis and increased barrier function. Gastroenterology139, 2093–2101 (2010). CASPubMed Google Scholar
Shah, Y. M. et al. Hypoxia-inducible factor augments experimental colitis through an MIF-dependent inflammatory signaling cascade. Gastroenterology134, 2036–2048 (2008). PubMed Google Scholar
Aherne, C. M. et al. Neuronal guidance molecule netrin-1 attenuates inflammatory cell trafficking during acute experimental colitis. Gut61, 695–705 (2012). CASPubMed Google Scholar
Frick, J. S. et al. Contribution of adenosine A2B receptors to inflammatory parameters of experimental colitis. J. Immunol.182, 4957–4964 (2009). CASPubMed Google Scholar
Eltzschig, H. K., Rivera-Nieves, J. & Colgan, S. P. Targeting the A2B adenosine receptor during gastrointestinal ischemia and inflammation. Expert Opin. Ther. Targets13, 1267–1277 (2009). CASPubMedPubMed Central Google Scholar
Ehrentraut, H. et al. CD73+ regulatory T cells contribute to adenosine-mediated resolution of acute lung injury. FASEB J.27, 2207–2219 (2013). CASPubMedPubMed Central Google Scholar
Ehrentraut, H., Westrich, J. A., Eltzschig, H. K. & Clambey, E. T. Adora2b adenosine receptor engagement enhances regulatory T cell abundance during endotoxin-induced pulmonary inflammation. PLoS ONE7, e32416 (2012). CASPubMedPubMed Central Google Scholar
Xiao, C. & Rajewsky, K. MicroRNA control in the immune system: basic principles. Cell136, 26–36 (2009). CASPubMed Google Scholar
Fraisl, P., Aragones, J. & Carmeliet, P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nature Rev. Drug Discov.8, 139–152 (2009). CAS Google Scholar
Cummins, E. P. et al. The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology134, 156–165 (2008). CASPubMed Google Scholar
Robinson, A. et al. Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology134, 145–155 (2008). CASPubMed Google Scholar
Keely, S. et al. Contribution of epithelial innate immunity to systemic protection afforded by prolyl hydroxylase inhibition in murine colitis. Mucosal Immunol.22, 114–123 (2013). Google Scholar
Yellon, D. M. & Hausenloy, D. J. Myocardial reperfusion injury. N. Engl. J. Med.357, 1121–1135 (2007). CASPubMed Google Scholar
Murry, C. E., Jennings, R. B. & Reimer, K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation74, 1124–1136 (1986). CASPubMed Google Scholar
Kohler, D. et al. CD39/ectonucleoside triphosphate diphosphohydrolase 1 provides myocardial protection during cardiac ischemia/reperfusion injury. Circulation116, 1784–1794 (2007). PubMed Google Scholar
Eckle, T. et al. Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation115, 1581–1590 (2007). CASPubMed Google Scholar
Eckle, T. et al. Systematic evaluation of a novel model for cardiac ischemic preconditioning in mice. Am. J. Physiol. Heart Circ. Physiol.291, H2533–H2540 (2006). CASPubMed Google Scholar
Eltzschig, H. K. Adenosine: an old drug newly discovered. Anesthesiology111, 904–915 (2009). CASPubMed Google Scholar
Eckle, T., Kohler, D., Lehmann, R., El Kasmi, K. C. & Eltzschig, H. K. Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation118, 166–175 (2008). CASPubMed Google Scholar
Eltzschig, H. K., Bonney, S. K. & Eckle, T. Attenuating myocardial ischemia by targeting A2B adenosine receptors. Trends Mol. Med.19, 345–354 (2013). CASPubMedPubMed Central Google Scholar
Eckle, T. et al. Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nature Med.18, 774–782 (2012). CASPubMed Google Scholar
Botker, H. E. et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet375, 727–734 (2010). PubMed Google Scholar
Cai, Z., Luo, W., Zhan, H. & Semenza, G. L. Hypoxia-inducible factor 1 is required for remote ischemic preconditioning of the heart. Proc. Natl Acad. Sci. USA110, 17462–17467 (2013). CASPubMedPubMed Central Google Scholar
Kharbanda, R. K., Nielsen, T. T. & Redington, A. N. Translation of remote ischaemic preconditioning into clinical practice. Lancet374, 1557–1565 (2009). PubMed Google Scholar
Ali, Z. A. et al. Remote ischemic preconditioning reduces myocardial and renal injury after elective abdominal aortic aneurysm repair: a randomized controlled trial. Circulation116 (11 Suppl.), I98–I105 (2007). PubMed Google Scholar
Eckle, T. et al. Crosstalk between the equilibrative nucleoside transporter ENT2 and alveolar Adora2b adenosine receptors dampens acute lung injury. FASEB J.27, 3078–3089 (2013). CASPubMedPubMed Central Google Scholar
Schingnitz, U. et al. Signaling through the A2B adenosine receptor dampens endotoxin-induced acute lung injury. J. Immunol.184, 5271–5279 (2010). CASPubMed Google Scholar
Eckle, T., Koeppen, M. & Eltzschig, H. K. Role of extracellular adenosine in acute lung injury. Physiology24, 298–306 (2009). CASPubMed Google Scholar
Eckle, T., Grenz, A., Laucher, S. & Eltzschig, H. K. A2B adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice. J. Clin. Invest.118, 3301–3315 (2008). CASPubMedPubMed Central Google Scholar
Dengler, V., Downey, G. P., Tuder, R. M., Eltzschig, H. K. & Schmidt, E. P. Neutrophil intercellular communication in acute lung injury: emerging roles of microparticles and gap junctions. Am. J. Respir. Cell. Mol. Biol.49, 1–5 (2013). CASPubMedPubMed Central Google Scholar
Ware, L. B. & Matthay, M. A. The acute respiratory distress syndrome. N. Engl. J. Med.342, 1334–1349 (2000). CASPubMed Google Scholar
Ranieri, V. M. et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA307, 2526–2533 (2012). PubMed Google Scholar
Herridge, M. S. et al. Functional disability 5 years after acute respiratory distress syndrome. N. Engl. J. Med.364, 1293–1304 (2011). CASPubMed Google Scholar
Sitkovsky, M. & Lukashev, D. Regulation of immune cells by local-tissue oxygen tension: HIF1α and adenosine receptors. Nature Rev. Immunol.5, 712–721 (2005). CAS Google Scholar
Sitkovsky, M. V. et al. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu. Rev. Immunol.22, 657–682 (2004). CASPubMed Google Scholar
Thiel, M. et al. Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury. PLoS Biol.3, e174 (2005). An important study indicating that hyperoxic conditions — which may be necessary for the treatment of patients with ALI to maintain oxygenation of different tissues — can be detrimental via inhibition of anti-inflammatory and tissue-protective functions of HIFs. PubMedPubMed Central Google Scholar
Eckle, T. et al. HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium. PLoS Biol.11, e1001665 (2013). CASPubMedPubMed Central Google Scholar
Kominsky, D. J., Campbell, E. L. & Colgan, S. P. Metabolic shifts in immunity and inflammation. J. Immunol.184, 4062–4068 (2010). CASPubMed Google Scholar
Kojima, H. et al. Abnormal B lymphocyte development and autoimmunity in hypoxia-inducible factor 1α -deficient chimeric mice. Proc. Natl Acad. Sci. USA99, 2170–2174 (2002). CASPubMedPubMed Central Google Scholar
Okumura, C. Y. et al. A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible factor-1 (HIF-1) and increases skin innate defenses against bacterial infection. J. Mol. Med.28, 1079–1089 (2012). Google Scholar
Warnecke, C. et al. Activation of the hypoxia-inducible factor-pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors. FASEB J.17, 1186–1188 (2003). CASPubMed Google Scholar
Schaible, B. et al. Hypoxia modulates infection of epithelial cells by Pseudomonas aeruginosa. PLoS ONE.8, e56491 (2013). CASPubMedPubMed Central Google Scholar
Kelly, C. J. et al. Fundamental role for HIF-1α in constitutive expression of human βdefensin-1. Mucosal Immunol.6, 6 (2013). Google Scholar
Pazgier, M., Hoover, D. M., Yang, D., Lu, W. & Lubkowski, J. Human β-defensins. Cell. Mol. Life Sci.63, 1294–1313 (2006). CASPubMed Google Scholar
Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol.3, 710–720 (2003). CAS Google Scholar
Schroeder, B. O. et al. Reduction of disulphide bonds unmasks potent antimicrobial activity of human β-defensin 1. Nature469, 419–423 (2011). CASPubMed Google Scholar
Harder, J., Bartels, J., Christophers, E. & Schroder, J. M. Isolation and characterization of human β-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem.276, 5707–5713 (2001). CASPubMed Google Scholar
O'Neil, D. A. et al. Expression and regulation of the human β-defensins hBD-1 and hBD-2 in intestinal epithelium. J. Immunol.163, 6718–6724 (1999). CASPubMed Google Scholar
Zhao, C., Wang, I. & Lehrer, R. I. Widespread expression of β-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett.396, 319–322 (1996). CASPubMed Google Scholar
Peyrin-Biroulet, L. et al. Peroxisome proliferator-activated receptor gamma activation is required for maintenance of innate antimicrobial immunity in the colon. Proc. Natl Acad. Sci. USA107, 8772–8777 (2010). CASPubMedPubMed Central Google Scholar
Kocsis, A. K. et al. Association of β-defensin 1 single nucleotide polymorphisms with Crohn's disease. Scand. J. Gastroenterol.43, 299–307 (2008). CASPubMed Google Scholar
Wehkamp, J. et al. Inducible and constitutive β-defensins are differentially expressed in Crohn's disease and ulcerative colitis. Inflamm. BowelDis.9, 215–223 (2003). Google Scholar
Jurevic, R. J., Bai, M., Chadwick, R. B., White, T. C. & Dale, B. A. Single-nucleotide polymorphisms (SNPs) in human β-defensin 1: high-throughput SNP assays and association with Candida carriage in type I diabetics and nondiabetic controls. J. Clin. Microbiol.41, 90–96 (2003). CASPubMedPubMed Central Google Scholar
Schaefer, A. S. et al. A 3′ UTR transition within DEFB1 is associated with chronic and aggressive periodontitis. Genes Immun.11, 45–54 (2010). CASPubMed Google Scholar
Ozturk, A., Famili, P. & Vieira, A. R. The antimicrobial peptide DEFB1 is associated with caries. J. Dent. Res.89, 631–636 (2010). CASPubMed Google Scholar
Peyssonnaux, C. et al. Critical role of HIF-1α in keratinocyte defense against bacterial infection. J. Invest. Dermatol.128, 1964–1968 (2008). CASPubMed Google Scholar
Steinbrech, D. S. et al. Fibroblast response to hypoxia: the relationship between angiogenesis and matrix regulation. J. Surg. Res.84, 127–133 (1999). CASPubMed Google Scholar
Tandara, A. A. & Mustoe, T. A. Oxygen in wound healing — more than a nutrient. World J. Surg.28, 294–300 (2004). PubMed Google Scholar
Furuta, G. T. et al. Hypoxia-inducible factor 1-dependent induction of intestinal trefoil factor protects barrier function during hypoxia. J. Exp. Med.193, 1027–1034 (2001). CASPubMedPubMed Central Google Scholar
Louis, N. A. et al. Selective induction of mucin-3 by hypoxia in intestinal epithelia. J. Cell Biochem.99, 1616–1627 (2006). CASPubMed Google Scholar
Elson, D. A., Ryan, H. E., Snow, J. W., Johnson, R. & Arbeit, J. M. Coordinate up-regulation of hypoxia inducible factor (HIF)-1α and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res.60, 6189–6195 (2000). CASPubMed Google Scholar
Albina, J. E. et al. HIF-1 expression in healing wounds: HIF-1α induction in primary inflammatory cells by TNF-α. Am. J. Physiol. Cell Physiol.281, C1971–1977 (2001). CASPubMed Google Scholar
Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature359, 843–845 (1992). CASPubMed Google Scholar
Glover, L. E. et al. Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. Proc. Natl Acad. Sci. USA110, 19820–19825 (2013). CASPubMedPubMed Central Google Scholar
Clavien, P. A., Petrowsky, H., DeOliveira, M. L. & Graf, R. Strategies for safer liver surgery and partial liver transplantation. N. Engl. J. Med.356, 1545–1559 (2007). PubMed Google Scholar
Pirenne, J. et al. Influence of ischemia-reperfusion injury on rejection after liver transplantation. Transplant. Proc.29, 366–367 (1997). CASPubMed Google Scholar
Watt, K. D., Lyden, E. R., Gulizia, J. M. & McCashland, T. M. Recurrent hepatitis C posttransplant: early preservation injury may predict poor outcome. Liver Transpl.12, 134–139 (2006). PubMed Google Scholar
Schneider, M. et al. Loss or silencing of the PHD1 prolyl hydroxylase protects livers of mice against ischemia/reperfusion injury. Gastroenterology138, 1143–1154 (2010). CASPubMed Google Scholar
Chouker, A. et al. In vivo hypoxic preconditioning protects from warm liver ischemia–reperfusion injury through the adenosine A2B receptor. Transplantation94, 894–902 (2012). CASPubMedPubMed Central Google Scholar
Hart, M. L. et al. Extracellular adenosine production by ecto-5′-nucleotidase protects during murine hepatic ischemic preconditioning. Gastroenterology135, 1739.e3–1750.e3 (2008). Google Scholar
Cheng, K. et al. Hypoxia-inducible factor-1α regulates β cell function in mouse and human islets. J. Clin. Invest.120, 2171–2183 (2010). CASPubMedPubMed Central Google Scholar
Atkinson, M. A., Eisenbarth, G. S. & Michels, A. W. Type 1 diabetes. Lancet383, 69–82 (2014). PubMed Google Scholar
Kebir, H. et al. Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nature Med.13, 1173–1175 (2007). CASPubMed Google Scholar
Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and TReg cells. J. Exp. Med.208, 1367–1376 (2011). CASPubMedPubMed Central Google Scholar
O'Connor, W. Jr et al. A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nature Immunol.10, 603–609 (2009). CAS Google Scholar
Ben-Shoshan, J., Maysel-Auslender, S., Mor, A., Keren, G. & George, J. Hypoxia controls CD4+CD25+ regulatory T-cell homeostasis via hypoxia-inducible factor-1α. Eur. J. Immunol.38, 2412–2418 (2008). CASPubMed Google Scholar
Bartels, K., Karhausen, J., Clambey, E. T., Grenz, A. & Eltzschig, H. K. Perioperative organ injury. Anesthesiology119, 1474–1489 (2013). PubMed Google Scholar
Park, S. W. et al. Paneth cell-mediated multiorgan dysfunction after acute kidney injury. J. Immunol.189, 5421–5433 (2012). CASPubMed Google Scholar
Gelman, S. The pathophysiology of aortic cross-clamping and unclamping. Anesthesiology82, 1026–1060 (1995). CASPubMed Google Scholar
Schrier, R. W. & Wang, W. Acute renal failure and sepsis. N. Engl. J. Med.351, 159–169 (2004). CASPubMed Google Scholar
Bove, T. et al. Renoprotective action of fenoldopam in high-risk patients undergoing cardiac surgery: a prospective, double-blind, randomized clinical trial. Circulation111, 3230–3235 (2005). CASPubMed Google Scholar
Kumar, A. B. & Suneja, M. Cardiopulmonary bypass-associated acute kidney injury. Anesthesiology114, 964–970 (2011). PubMed Google Scholar
Hill, P. et al. Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol.19, 39–46 (2008). CASPubMedPubMed Central Google Scholar
Grenz, A. et al. The reno-vascular A2B adenosine receptor protects the kidney from ischemia. PLoS Med.5, e137 (2008). PubMedPubMed Central Google Scholar
Kapitsinou, P. P. et al. Endothelial HIF-2 mediates protection and recovery from ischemic kidney injury. J. Clin. Invest.124, 2396–2409 (2014). An important study that, for the first time, implicates kidney protection by HIF2α expressed in vascular endothelial cells. CASPubMedPubMed Central Google Scholar
Mole, D. R. et al. 2-oxoglutarate analogue inhibitors of HIF prolyl hydroxylase. Bioorg. Med. Chem. Lett.13, 2677–2680 (2003). CASPubMed Google Scholar
Masson, N. & Ratcliffe, P. J. HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O2 levels. J. Cell Sci.116, 3041–3049 (2003). CASPubMed Google Scholar
Chan, D. A., Sutphin, P. D., Yen, S. E. & Giaccia, A. J. Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1α. Mol. Cell. Biol.25, 6415–6426 (2005). CASPubMedPubMed Central Google Scholar
Kong, D. et al. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res.65, 9047–9055 (2005). CASPubMed Google Scholar
Wang, R., Zhou, S. & Li, S. Cancer therapeutic agents targeting hypoxia-inducible factor-1. Curr. Med. Chem.18, 3168–3189 (2011). CASPubMed Google Scholar
Xia, Y., Choi, H. K. & Lee, K. Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur. J. Med. Chem.49, 24–40 (2012). CASPubMed Google Scholar
Ku, J. H. et al. Effect of dutasteride on the expression of hypoxia-inducible factor-1α, vascular endothelial growth factor and microvessel density in rat and human prostate tissue. Scand. J. Urol. Nephrol.43, 445–453 (2009). CASPubMed Google Scholar
Puppo, M. et al. Topotecan inhibits vascular endothelial growth factor production and angiogenic activity induced by hypoxia in human neuroblastoma by targeting hypoxia-inducible factor-1α and -2α. Mol. Cancer Ther.7, 1974–1984 (2008). CASPubMed Google Scholar
Palayoor, S. T. et al. PX-478, an inhibitor of hypoxia-inducible factor-1α, enhances radiosensitivity of prostate carcinoma cells. Int. J. Cancer123, 2430–2437 (2008). CASPubMedPubMed Central Google Scholar
Rey, S. et al. Synergistic effect of HIF-1α gene therapy and HIF-1-activated bone marrow-derived angiogenic cells in a mouse model of limb ischemia. Proc. Natl Acad. Sci. USA106, 20399–20404 (2009). CASPubMedPubMed Central Google Scholar
Aragones, J. et al. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nature Genet.40, 170–180 (2008). A study providing critically important insights into mechanisms of PHD-dependent tissue protection during ischaemia. Indeed, the authors found thatPHD1deletion and concomittant elevation in HIFs is associated with improved metabolic responses, thereby promoting hypoxia or ischaemia tolerance. CASPubMed Google Scholar
Rajagopalan, S. et al. Use of a constitutively active hypoxia-inducible factor-1α transgene as a therapeutic strategy in no-option critical limb ischemia patients: Phase I dose-escalation experience. Circulation115, 1234–1243 (2007). CASPubMed Google Scholar
Creager, M. A. et al. Effect of hypoxia-inducible factor-1α gene therapy on walking performance in patients with intermittent claudication. Circulation124, 1765–1773 (2011). CASPubMed Google Scholar
Bernhardt, W. M. et al. Inhibition of prolyl hydroxylases increases erythropoietin production in ESRD. J. Am. Soc. Nephrol.21, 2151–2156 (2010). The first published clinical trial that successfully uses a PHD inhibitor in patients to achieve HIF stabilization and concomitant increases in erythropoitin production. CASPubMedPubMed Central Google Scholar
Flight, M. H. Deal watch: AstraZeneca bets on FibroGen's anaemia drug. Nature Rev. Drug Discov.12, 730 (2013). Google Scholar
Macdougall, I. C. New anemia therapies: translating novel strategies from bench to bedside. Am. J. Kidney Dis.59, 444–451 (2012). PubMed Google Scholar
Semenza, G. L. Targeting HIF-1 for cancer therapy. Nature Rev. Cancer3, 721–732 (2003). CAS Google Scholar
Kaelin, W. G. Von Hippel–Lindau disease. Annu. Rev. Pathol.2, 145–173 (2007). An important review paper that summarizes the discovery and functional role of theVHLgene in the post-translational regulation of HIF levels. CASPubMed Google Scholar
Fraisl, P., Mazzone, M., Schmidt, T. & Carmeliet, P. Regulation of angiogenesis by oxygen and metabolism. Dev. Cell16, 167–179 (2009). CASPubMed Google Scholar
Liao, D. & Johnson, R. S. Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev.26, 281–290 (2007). CASPubMed Google Scholar
Pouyssegur, J., Dayan, F. & Mazure, N. M. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature441, 437–443 (2006). CASPubMed Google Scholar
Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell136, 839–851 (2009). CASPubMedPubMed Central Google Scholar
Galluzzi, L., Kepp, O., Heiden, M. G. & Kroemer, G. Metabolic targets for cancer therapy. Nature Rev. Drug Discov.12, 829–846 (2013). CAS Google Scholar
Semenza, G. L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene29, 625–634 (2009). PubMedPubMed Central Google Scholar
Asikainen, T. M. et al. Improved lung growth and function through hypoxia-inducible factor in primate chronic lung disease of prematurity. FASEB J.20, 1698–1700 (2006). CASPubMed Google Scholar
Hams, E. et al. The hydroxylase inhibitor dimethyloxallyl glycine attenuates endotoxic shock via alternative activation of macrophages and IL-10 production by B1 cells. Shock36, 295–302 (2011). CASPubMedPubMed Central Google Scholar
Percy, M. J. et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med.358, 162–168 (2008). CASPubMedPubMed Central Google Scholar
Simonson, T. S. et al. Genetic evidence for high-altitude adaptation in Tibet. Science329, 72–75 (2010). CASPubMed Google Scholar
Higgins, D. F. et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J. Clin. Invest.117, 3810–3820 (2007). CASPubMedPubMed Central Google Scholar
Kastelein, J. J. et al. Potent reduction of apolipoprotein B and low-density lipoprotein cholesterol by short-term administration of an antisense inhibitor of apolipoprotein B. Circulation114, 1729–1735 (2006). CASPubMed Google Scholar
Takeda, N. et al. Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis. Genes Dev.24, 491–501 (2010). CASPubMedPubMed Central Google Scholar
Keith, B., Johnson, R. S. & Simon, M. C. HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression. Nature Rev. Cancer12, 9–22 (2012). CAS Google Scholar
Branco-Price, C. et al. Endothelial cell HIF-1α and HIF-2α differentially regulate metastatic success. Cancer Cell21, 52–65 (2012). CASPubMedPubMed Central Google Scholar
Scholz, C. C. et al. Regulation of IL-1β-induced NF-κB by hydroxylases links key hypoxic and inflammatory signaling pathways. Proc. Natl Acad. Sci. USA110, 18490–18495 (2013). CASPubMedPubMed Central Google Scholar
Cockman, M. E. et al. Posttranslational hydroxylation of ankyrin repeats in IκB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc. Natl Acad. Sci. USA103, 14767–14772 (2006). CASPubMedPubMed Central Google Scholar
Zaph, C. et al. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature446, 552–556 (2007). CASPubMed Google Scholar
Coleman, M. L. et al. Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor. J. Biol. Chem.282, 24027–24038 (2007). CASPubMed Google Scholar
Koditz, J. et al. Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood110, 3610–3617 (2007). PubMed Google Scholar
Bartels, K., Grenz, A. & Eltzschig, H. K. Hypoxia and inflammation are two sides of the same coin. Proc. Natl Acad. Sci. USA110, 18351–18352 (2013). CASPubMedPubMed Central Google Scholar
Riegel, A. K. et al. Selective induction of endothelial P2Y6 nucleotide receptor promotes vascular inflammation. Blood117, 2548–2555 (2011). CASPubMedPubMed Central Google Scholar
Koeppen, M., Eckle, T. & Eltzschig, H. K. Interplay of hypoxia and A2B adenosine receptors in tissue protection. Adv. Pharmacol.61, 145–186 (2011). CASPubMed Google Scholar
Aherne, C. M., Kewley, E. M. & Eltzschig, H. K. The resurgence of A2B adenosine receptor signaling. Biochim. Biophys. Acta1808, 1329–1339 (2011). CASPubMed Google Scholar
Faigle, M., Seessle, J., Zug, S., El Kasmi, K. C. & Eltzschig, H. K. ATP release from vascular endothelia occurs across Cx43 hemichannels and is attenuated during hypoxia. PLoS ONE3, e2801 (2008). PubMedPubMed Central Google Scholar
Eltzschig, H. K. et al. ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine-dependent endothelial cell function. Circ. Res.99, 1100–1108 (2006). CASPubMed Google Scholar
Hart, M. L., Gorzolla, I. C., Schittenhelm, J., Robson, S. C. & Eltzschig, H. K. SP1-dependent induction of CD39 facilitates hepatic ischemic preconditioning. J. Immunol.184, 4017–4024 (2010). CASPubMed Google Scholar
Eltzschig, H. K. et al. Central role of Sp1-regulated CD39 in hypoxia/ischemia protection. Blood113, 224–232 (2009). CASPubMedPubMed Central Google Scholar
Thompson, L. F. et al. Crucial role for ecto-5′- nucleotidase (CD73) in vascular leakage during hypoxia. J. Exp. Med.200, 1395–1405 (2004). CASPubMedPubMed Central Google Scholar
Ahmad, A. et al. Adenosine A2A receptor is a unique angiogenic target of HIF-2α in pulmonary endothelial cells. Proc. Natl Acad. Sci. USA106, 10684–10689 (2009). CASPubMedPubMed Central Google Scholar
Kong, T., Westerman, K. A., Faigle, M., Eltzschig, H. K. & Colgan, S. P. HIF-dependent induction of adenosine A2B receptor in hypoxia. FASEB J.20, 2242–2250 (2006). CASPubMed Google Scholar
Morote-Garcia, J. C., Rosenberger, P., Nivillac, N. M., Coe, I. R. & Eltzschig, H. K. Hypoxia-inducible factor-dependent repression of equilibrative nucleoside transporter 2 attenuates mucosal inflammation during intestinal hypoxia. Gastroenterology136, 607–618 (2009). CASPubMed Google Scholar
Eltzschig, H. K. et al. HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J. Exp. Med.202, 1493–1505 (2005). CASPubMedPubMed Central Google Scholar
Casanello, P. et al. Equilibrative nucleoside transporter 1 expression is downregulated by hypoxia in human umbilical vein endothelium. Circ. Res.97, 16–24 (2005). CASPubMed Google Scholar
Morote-Garcia, J. C., Rosenberger, P., Kuhlicke, J. & Eltzschig, H. K. HIF-1-dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak. Blood111, 5571–5580 (2008). CASPubMed Google Scholar
Chan, D. A., Sutphin, P. D., Denko, N. C. & Giaccia, A. J. Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1α. J. Biol. Chem.277, 40112–40117 (2002). CASPubMed Google Scholar
McDonough, M. A. et al. Selective inhibition of factor inhibiting hypoxia-inducible factor. J. Am. Chem. Soc.127, 7680–7681 (2005). CASPubMed Google Scholar
Wang, G. L. & Semenza, G. L. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood.82, 3610–3615 (1993). CASPubMed Google Scholar
Knowles, H. J., Tian, Y. M., Mole, D. R. & Harris, A. L. Novel mechanism of action for hydralazine: induction of hypoxia-inducible factor-1α, vascular endothelial growth factor, and angiogenesis by inhibition of prolyl hydroxylases. Circ. Res.95, 162–169 (2004). CASPubMed Google Scholar
Ivan, M. et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl Acad. Sci. USA99, 13459–13464 (2002). CASPubMedPubMed Central Google Scholar
Nangaku, M. et al. A novel class of prolyl hydroxylase inhibitors induces angiogenesis and exerts organ protection against ischemia. Arterioscler. Thromb. Vasc. Biol.27, 2548–2554 (2007). CASPubMed Google Scholar
Zaman, K. et al. Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, 21(waf1/cip1), and erythropoietin. J. Neurosci.19, 9821–9830 (1999). CASPubMedPubMed Central Google Scholar
Warshakoon, N. C. et al. Design and synthesis of a series of novel pyrazolopyridines as HIF-1α prolyl hydroxylase inhibitors. Bioorg. Med. Chem. Lett.16, 5687–5690 (2006). CASPubMed Google Scholar
Choi, S. M. et al. Clioquinol, a Cu(II)/Zn(II) chelator, inhibits both ubiquitination and asparagine hydroxylation of hypoxia-inducible factor-1α, leading to expression of vascular endothelial growth factor and erythropoietin in normoxic cells. J. Biol. Chem.281, 34056–34063 (2006). CASPubMed Google Scholar
Siddiq, A. et al. Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. J. Biol. Chem.280, 41732–41743 (2005). CASPubMed Google Scholar
Jiang, B. H. et al. Phosphatidylinositol 3-kinase signaling controls levels of hypoxia-inducible factor 1. Cell Growth Differ.12, 363–369 (2001). CASPubMed Google Scholar
Majumder, P. K. et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1- dependent pathways. Nature Med.10, 594–601 (2004). CASPubMed Google Scholar
Mie Lee, Y. et al. Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1α activity. Biochem. Biophys. Res. Commun.300, 241–246 (2003). PubMed Google Scholar
Qian, D. Z. et al. Class II histone deacetylases are associated with VHL-independent regulation of hypoxia-inducible factor 1α. Cancer Res.66, 8814–8821 (2006). CASPubMed Google Scholar
Kong, X. et al. Histone deacetylase inhibitors induce VHL and ubiquitin-independent proteasomal degradation of hypoxia-inducible factor 1α. Mol. Cell. Biol.26, 2019–2028 (2006). CASPubMedPubMed Central Google Scholar
Hur, E. et al. Reduction of hypoxia-induced transcription through the repression of hypoxia-inducible factor-1α/aryl hydrocarbon receptor nuclear translocator DNA binding by the 90-kDa heat-shock protein inhibitor radicicol. Mol. Pharmacol.62, 975–982 (2002). CASPubMed Google Scholar
Osada, M., Imaoka, S. & Funae, Y. Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1α protein. FEBS Lett.575, 59–63 (2004). CASPubMed Google Scholar
Mabjeesh, N. J. et al. Geldanamycin induces degradation of hypoxia-inducible factor 1α protein via the proteosome pathway in prostate cancer cells. Cancer Res.62, 2478–2482 (2002). CASPubMed Google Scholar
Isaacs, J. S. et al. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1α-degradative pathway. J. Biol. Chem.277, 29936–29944 (2002). CASPubMed Google Scholar
Kaluz, S., Kaluzova, M. & Stanbridge, E. J. Proteasomal inhibition attenuates transcriptional activity of hypoxia-inducible factor 1 (HIF-1) via specific effect on the HIF-1α C-terminal activation domain. Mol. Cell. Biol.26, 5895–5907 (2006). CASPubMedPubMed Central Google Scholar
Yeo, E. J. et al. Amphotericin B blunts erythropoietin response to hypoxia by reinforcing FIH-mediated repression of HIF-1. Blood.107, 916–923 (2006). CASPubMed Google Scholar
Kung, A. L. et al. Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell.6, 33–43 (2004). CASPubMed Google Scholar
Verma, R. P. & Hansch, C. Camptothecins: a SAR/QSAR study. Chem. Rev.109, 213–235 (2009). CASPubMed Google Scholar
Rapisarda, A. et al. Schedule-dependent inhibition of hypoxia-inducible factor-1α protein accumulation, angiogenesis, and tumor growth by topotecan in U251-HRE glioblastoma xenografts. Cancer Res.64, 6845–6848 (2004). CASPubMed Google Scholar