van Rijk, A. & Bloemendal, H. Molecular mechanisms of exon shuffling: illegitimate recombination. Genetica118, 245–249 (2003). ArticleCASPubMed Google Scholar
van Rijk, A. A., de Jong, W. W. & Bloemendal, H. Exon shuffling mimicked in cell culture. Proc. Natl Acad. Sci. USA96, 8074–8079 (1999). ArticleCASPubMedPubMed Central Google Scholar
Moran, J. V., DeBerardinis, R. J. & Kazazian, H. H. Jr. Exon shuffling by L1 retrotransposition. Science283, 1530–1534 (1999). ArticleCASPubMed Google Scholar
Esnault, C., Maestre, J. & Heidmann, T. Human LINE retrotransposons generate processed pseudogenes. Nature Genet.24, 363–367 (2000). ArticleCASPubMed Google Scholar
Kaessmann, H., Zollner, S., Nekrutenko, A. & Li, W. H. Signatures of domain shuffling in the human genome. Genome Res.12, 1642–1650 (2002). Based on analysis of human andC. elegansgenomes, this paper provides new evidence that intron-phase correlation is a sign of exon shuffling that recombines protein-coding domains to form a new gene. ArticleCASPubMedPubMed Central Google Scholar
de Souza, S. J., Long, M., Schoenbach, L., Roy, S. W. & Gilbert, W. Intron positions correlate with module boundaries in ancient proteins. Proc. Natl Acad. Sci. USA93, 14632–14636 (1996). ArticleCASPubMedPubMed Central Google Scholar
Patthy, L. Exon shuffling and other ways of module exchange. Matrix Biol.15, 301–310, 311–312 (1996). ArticleCASPubMed Google Scholar
Ohno, S. Evolution by Gene Duplication (Springer, Berlin, 1970). Book Google Scholar
Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, Cambridge, 1983). Book Google Scholar
Prince, V. E. & Pickett, F. B. Splitting pairs: the diverging fates of duplicated genes. Nature Rev. Genet.3, 827–837 (2002). ArticleCASPubMed Google Scholar
Bailey, J. A. et al. Recent segmental duplications in the human genome. Science297, 1003–1007 (2002). ArticleCASPubMed Google Scholar
Samonte, R. V. & Eichler, E. E. Segmental duplications and the evolution of the primate genome. Nature Rev. Genet.3, 65–72 (2002). ArticleCASPubMed Google Scholar
Makalowski, W., Mitchell, G. A. & Labuda, D. Alu sequences in the coding regions of mRNA: a source of protein variability. Trends Genet.10, 188–193 (1994). ArticleCASPubMed Google Scholar
Makalowski, W. in The Impact of Short Interspersed Elements (SINEs) on the Host Genome (ed. Maraia, R. J.) 86–104 (Landes Company, Austin, 1995). Google Scholar
Nekrutenko, A. & Li, W. H. Transposable elements are found in a large number of human protein-coding genes. Trends Genet.17, 619–621 (2001). ArticleCASPubMed Google Scholar
Lorenc, A. & Makalowski, W. Transposable elements and vertebrate protein diversity. Genetica118, 467–477 (2003). Article Google Scholar
de Koning, A. P., Brinkman, F. S., Jones, S. J. & Keeling, P. J. Lateral gene transfer and metabolic adaptation in the human parasite Trichomonas vaginalis. Mol. Biol. Evol.17, 1769–1773 (2000). ArticleCASPubMed Google Scholar
Bergthorsson, U., Adams, K. L., Thomason, B. & Palmer, J. D. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature424, 197–201 (2003). ArticleCASPubMed Google Scholar
Thomson, T. M. et al. Fusion of the human gene for the polyubiquitination coeffector UEV1 with Kua, a newly identified gene. Genome Res.10, 1743–1756 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nurminsky, D. I., Nurminskaya, M. V., De Aguiar, D. & Hartl, D. L. Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature396, 572–575 (1998). In this study, a youngD. melanogastergene showed unusually rapid changes in its structure, from seemingly unrelated resources, which led to unexpected new functions of the gene in sperm tails. ArticleCASPubMed Google Scholar
Wang, W., Brunet, F. G., Nevo, E. & Long, M. Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc. Natl Acad. Sci. USA99, 4448–4453 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wang, W., Thornton, K., Berry, A. & Long, M. Nucleotide variation along the Drosophila melanogaster fourth chromosome. Science295, 134–137 (2002). ArticleCASPubMed Google Scholar
Haldane, J. B. S. The part played by recurrent mutation in evolution. Am. Nat.67, 5–19 (1933). Article Google Scholar
Fisher, R. A. The sheltering of lethals. Am. Nat.69, 446–455 (1935). Article Google Scholar
Hughes, A. L. The evolution of functionally novel proteins after gene duplication. Proc. R. Soc. Lond. B256, 119–124 (1994). ArticleCAS Google Scholar
Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics151, 1531–1545 (1999). CASPubMedPubMed Central Google Scholar
Walsh, B. Population-genetic model of the fates of duplicate genes. Genetica118, 279–294 (2003). ArticleCASPubMed Google Scholar
Gu, X. Maximum-likelihood approach for gene family evolution under functional divergence. Mol. Biol. Evol.18, 453–464 (2001). ArticleCASPubMed Google Scholar
Long, M. & Langley, C. H. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science260, 91–95 (1993). ArticleCASPubMed Google Scholar
Messier, W. & Stewart, C. B. Episodic adaptive evolution of primate lysozymes. Nature385, 151–154 (1997). ArticleCASPubMed Google Scholar
Zhang, J., Rosenberg, H. F. & Nei, M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc. Natl Acad. Sci. USA95, 3708–3713 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zhang, J., Zhang, Y. P. & Rosenberg, H. F. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nature Genet.30, 411–415 (2002). In this study, the authors combine sequence analysis and recombination protein technology to detect positive selection in the adaptive evolution of a new gene duplicate to the changed digestive system in the leaf-eating colobine monkey. ArticleCASPubMed Google Scholar
Ohta, T. Further examples of evolution by gene duplication revealed through DNA sequence comparisons. Genetics138, 1331–1337 (1994). CASPubMedPubMed Central Google Scholar
Johnson, M. E. et al. Positive selection of a gene family during the emergence of humans and African apes. Nature413, 514–519 (2001). ArticleCASPubMed Google Scholar
Begun, D. J. Origin and evolution of a new gene descended from alcohol dehydrogenase in Drosophila. Genetics145, 375–382 (1997). CASPubMedPubMed Central Google Scholar
Maston, G. A. & Ruvolo, M. Chorionic gonadotropin has a recent origin within primates and an evolutionary history of selection. Mol. Biol. Evol.19, 320–335 (2002). This paper discusses how an important function (involving pregnancy establishment in human and other primates) arose by gene duplication, supported by ample biological data. ArticleCASPubMed Google Scholar
Paulding, C. A., Ruvolo, M. & Haber, D. A. The Tre2 (USP6) oncogene is a hominoid-specific gene. Proc. Natl Acad. Sci. USA100, 2507–2511 (2003). ArticleCASPubMedPubMed Central Google Scholar
Long, M., de Souza, S. J., Rosenberg, C. & Gilbert, W. Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome c1 precursor. Proc. Natl Acad. Sci. USA93, 7727–7731 (1996). ArticleCASPubMedPubMed Central Google Scholar
Ranz, J. M., Ponce, A. R., Hartl, D. L. & Nurminsky, D. Origin and evolution of a new gene expressed in the Drosophila sperm axoneme. Genetica118, 233–244 (2003). ArticleCASPubMed Google Scholar
Betrán, E., Wang, W., Jin, L. & Long, M. Evolution of the phosphoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene. Mol. Biol. Evol.19, 654–663 (2002). ArticlePubMed Google Scholar
Brown, C. J., Todd, K. M. & Rosenzweig, R. F. Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Mol. Biol. Evol.15, 931–942 (1998). This study of experimental evolution shows that a new gene function can arise rapidly as a response to a changed environment. ArticleCASPubMed Google Scholar
Hall, B. G. The EBG system of E. coli: origin and evolution of a novel β-galactosidase for the metabolism of lactose. Genetica118, 143–156 (2003). ArticleCASPubMed Google Scholar
McDonald, J. H. & Kreitman, M. Adaptative protein evolution at the Adh locus in. Drosophila. Nature351, 652–654 (1991). CASPubMed Google Scholar
Henikoff, S., Ahmad, K. & Malik, H. S. The centromere paradox: stable inheritance with rapidly evolving DNA. Science293, 1098–1102 (2001). ArticleCASPubMed Google Scholar
Malik, H. S. & Henikoff, S. Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics157, 1293–1298 (2001). CASPubMedPubMed Central Google Scholar
Betrán, E. & Long, M. Dntf-2r: a young Drosophila retroposed gene with specific male expression under positive Darwinian selection. Genetics164, 977–988 (2003). PubMedPubMed Central Google Scholar
Llopart, A., Comeron, J. M., Brunet, F. G., Lachaise, D. & Long, M. Intron presence–absence polymorphism in Drosophila driven by positive Darwinian selection. Proc. Natl Acad. Sci. USA99, 8121–8126 (2002). ArticleCASPubMedPubMed Central Google Scholar
Cheng, C. H., Chen, L., Near, T. J. & Jin, Y. Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an Antarctic evolutionary origin. Mol. Biol. Evol. 28 July 2003 (doi:10.1093/molbev/msg004). ArticleCASPubMed Google Scholar
Chen, L., DeVries, A. L. & Cheng, C. H. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc. Natl Acad. Sci. USA94, 3817–3822 (1997). This study clearly showed how a similar environmental challenge in two different geographic locations created similar genes with the same function from different DNA materials. ArticleCASPubMedPubMed Central Google Scholar
Chen, L., DeVries, A. L. & Cheng, C. H. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc. Natl Acad. Sci. USA94, 3811–3816 (1997). ArticleCASPubMedPubMed Central Google Scholar
Thornton, K. & Long, M. Rapid divergence of gene duplicates on the Drosophila melanogaster X chromosome. Mol. Biol. Evol.19, 918–925 (2002). ArticleCASPubMed Google Scholar
Charlesworth, B., Coyne, J. A. & Barton N. H. The relatives rates of evolution of sex chromosomes and autosomes. Am. Nat.130, 113–146 (1987). Article Google Scholar
Orr, H. A. & Betancourt, A. J. Haldane's sieve and adaptation from the standing genetic variation. Genetics157, 875–884 (2001). CASPubMedPubMed Central Google Scholar
Betancourt, A. J., Presgraves, D. C. & Swanson, W. J. A test for faster X evolution in Drosophila. Mol. Biol. Evol.19, 1816–1819 (2002). ArticleCASPubMed Google Scholar
The Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature409, 860–921 (2001).
Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature420, 520–562 (2002). ArticleCASPubMed Google Scholar
Betrán, E. & Long, M. Expansion of genome coding regions by acquisition of new genes. Genetica115, 65–80 (2002). ArticlePubMed Google Scholar
Patthy, L. Protein Evolution by Exon-shuffling (Springer, New York, 1995). Google Scholar
Todd, A. E., Orengo, C. A. & Thornton, J. M. Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol.307, 1113–1143 (2001). A detailed structural and sequence analysis of 31 enzyme superfamilies for which structural data are available. Interestingly, almost all of the families were subject to domain shuffling, which highlights the generality of the mechanism in new gene origination. ArticleCASPubMed Google Scholar
Long, M., de Souza, S. J. & Gilbert, W. Evolution of the intron–exon structure of eukaryotic genes. Curr. Opin. Genet. Dev.5, 774–778 (1995). ArticleCASPubMed Google Scholar
Long, M., Rosenberg, C. & Gilbert, W. Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl Acad. Sci. USA92, 12495–12499 (1995). ArticleCASPubMedPubMed Central Google Scholar
Long, M., de Souza, S. J., Rosenberg, C. & Gilbert, W. Relationship between “proto-splice sites” and intron phases: evidence from dicodon analysis. Proc. Natl Acad. Sci. USA95, 219–223 (1998). ArticleCASPubMedPubMed Central Google Scholar
Patthy, L. Intron-dependent evolution: preferred types of exons and introns. FEBS Lett.214, 1–7 (1987). ArticleCASPubMed Google Scholar
Roy, S. W., Lewis, B. P., Fedorov, A. & Gilbert, W. Footprints of primordial introns on the eukaryotic genome. Trends Genet.17, 496–501 (2001). The authors described an unexpectedly significant correlation between the distribution of intron phases and the age of the host genes, which supported a model of ancient exon–intron structure with gradual intron addition. ArticleCASPubMed Google Scholar
Fedorov, A., Roy, S., Cao, X. & Gilbert, W. Phylogenetically older introns strongly correlate with module boundaries in ancient proteins. Genome Res.13, 1155–1157 (2003). ArticleCASPubMedPubMed Central Google Scholar
Long, M. & de Souza, S. J. Intron–exon structures: from molecular to population biology. Adv. Genome Biol.5A, 143–178 (1998). ArticleCAS Google Scholar
Kazazian, H. H. J. L1 retrotransposons shape the mammalian genome. Science289, 1152–1153 (2000). ArticleCASPubMed Google Scholar
Pickeral, O. K., Makalowski, W., Boguski, M. S. & Boeke, J. D. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res.10, 411–415 (2000). ArticleCASPubMedPubMed Central Google Scholar
Harrison, P. M. et al. Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res.12, 272–280 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lifschytz, E. & Lindsley, D. L. The role of X-chromosome inactivation during spermatogenesis (_Drosophila_-allocycly-chromosome evolution-male sterility-dosage compensation). Proc. Natl Acad. Sci. USA69, 182–186 (1972). ArticleCASPubMedPubMed Central Google Scholar
McCarrey, J. R. Nucleotide sequence of the promoter region of a tissue-specific human retroposon: comparison with its housekeeping progenitor. Gene61, 291–298 (1987). ArticleCASPubMed Google Scholar
McCarrey, J. R. Evolution of tissue-specific gene expression in mammals: how a new phosphoglycerate kinase was formed and refined. BioScience44, 20–27 (1994). Article Google Scholar
Pan, Y., Decker, W. K., Huq, A. H. & Craigen, W. J. Retrotransposition of glycerol kinase-related genes from the X chromosome to autosomes: functional and evolutionary aspects. Genomics59, 282–290 (1999). ArticleCASPubMed Google Scholar
Elliott, D. J. et al. An evolutionarily conserved germ cell-specific hnRNP is encoded by a retrotransposed gene. Hum. Mol. Genet.9, 2117–2124 (2000). ArticleCASPubMed Google Scholar
Kaminker, J. S. et al. The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol.3, 0084 (2002). Article Google Scholar
Swanson, W. J., Clark, A. G., Waldrip-Dail, H. M., Wolfner, M. F. & Aquadro, C. F. Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in Drosophila. Proc. Natl Acad. Sci. USA98, 7375–7379 (2001). ArticleCASPubMedPubMed Central Google Scholar
Avner, P. & Heard, E. X-chromosome inactivation: counting, choice and initiation. Nature Rev. Genet.2, 59–67 (2001). ArticleCASPubMed Google Scholar
Franke, A. & Baker, B. S. Dosage compensation rox! Curr. Opin. Cell Biol.12, 351–354 (2000). ArticleCASPubMed Google Scholar
Richler, C. et al. Splicing components are excluded from the transcriptionally inactive XY body in male meiotic nuclei. Mol. Biol. Cell5, 1341–1352 (1994). ArticleCASPubMedPubMed Central Google Scholar
Wu, C -I. & Xu, E. Y. Sexual antagonism and X inactivation — the SAXI hypothesis. Trends Genet.19, 243–247 (2003). ArticleCASPubMed Google Scholar
Wang, P. J., McCarrey, J. R., Yang, F. & Page, D. C. An abundance of X-linked genes expressed in spermatogonia. Nature Genet.27, 422–426 (2001). ArticlePubMedCAS Google Scholar
Rice, W. R. Sex chromosomes and the evolution of sexual dimorphism. Evolution38, 735–742 (1984). ArticlePubMed Google Scholar
Ranz, J. M., Castillo-Davis, C. I., Meiklejohn, C. D. & Hartl, D. L. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science300, 1742–1745 (2003). ArticleCASPubMed Google Scholar
Reinke, V. et al. A global profile of germline gene expression in C. elegans. Mol. Cell6, 605–616 (2000). ArticleCASPubMed Google Scholar
Kelly, W. G. et al. X-chromosome silencing in the germline of C. elegans. Development129, 479–492 (2002). CASPubMed Google Scholar
Langley, C. H., Montgomery, E. & Quattlebaum, W. F. Restriction map variation in the Adh region of Drosophila. Proc. Natl Acad. Sci. USA79, 5631–5635 (1982). ArticleCASPubMedPubMed Central Google Scholar
Jeffs, P. & Ashburner, M. Processed pseudogenes in Drosophila. Proc. R. Soc. Lond. B244, 151–159 (1991). ArticleCAS Google Scholar
Wang, W., Zhang, J., Alvarez, C., Llopart, A. & Long, M. The origin of the Jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Mol. Biol. Evol.17, 1294–1301 (2000). ArticleCASPubMed Google Scholar
Long, M., Wang, W. & Zhang, J. Origin of new genes and source for N-terminal domain of the chimerical gene, jingwei, in Drosophila. Gene238, 135–141 (1999). ArticleCASPubMed Google Scholar
Petrov, D. A., Lozovskaya, E. R. & Hartl, D. L. High intrinsic rate of DNA loss in Drosophila. Nature384, 346–349 (1996). ArticleCASPubMed Google Scholar
Weiner, A. M., Deininger, P. L. & Efstratiadis, A. Nonviral retroposons: genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu. Rev. Biochem.55, 631–661 (1986). ArticleCASPubMed Google Scholar
Javaud, C., Dupuy, F., Maftah, A., Julien, R. & Petit, J -M. The fucosyltransferase gene family: an amazing summary of the underlying mechanisms of gene evolution. Genetica118, 157–170 (2003). ArticleCASPubMed Google Scholar
Hughes, A. Adaptive Evolution of Genes and Genomes, (Oxford Univ. Press, Oxford, 2000). Google Scholar
Courseaux, A. & Nahon, J. L. Birth of two chimeric genes in the Hominidae lineage. Science291, 1293–1297 (2001). This paper reported two chimeric genes —PMCHL1and very youngPMCHL2— in Hominidae, which showed that an intron-containing gene structure can be retroposed to another genomic location. ArticleCASPubMed Google Scholar
Goodier, J. L., Ostertag, E. M. & Kazazian, H. H. Jr. Transduction of 3′-flanking sequences is common in L1 retrotransposition. Hum. Mol. Genet.9, 653–657 (2000). ArticleCASPubMed Google Scholar
Brosius, J. RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene238, 115–134 (1999). ArticleCASPubMed Google Scholar
Brosius, J. The contribution of RNAs and retroposition to evolutionary novelties. Genetica118, 99–116 (2003). ArticleCASPubMed Google Scholar
Makalowski, W. Genomic scrap yard: how genomes utilize all that junk. Gene259, 61–67 (2000). ArticleCASPubMed Google Scholar
Lorenc, A. & Makalowski, W. Transposable elements and vertebrate protein diversity. Genetica118, 183–191 (2003). ArticleCASPubMed Google Scholar
Ragan, M. A. On surrogate methods for detecting lateral gene transfer. FEMS Microbiol. Lett.201, 187–191 (2001). ArticleCASPubMed Google Scholar
McCarthy, A. D. & Hardie, D. G. Fatty acid synthase — an example of protein evolution by gene fusion. Trends Biochem. Sci.4, 60–63 (1984). Article Google Scholar
Snel, B., Bork, P. & Huynen, M. Gene fusion versus gene fission. Trends Genet.16, 9–11 (2000). ArticleCASPubMed Google Scholar
Martignetti, J. A. & Brosius, J. Neural BC1 RNA as an evolutionary marker: guinea pig remains a rodent. Proc. Natl Acad. Sci. USA90, 9698–9702 (1993). ArticleCASPubMedPubMed Central Google Scholar
Martignetti, J. A. & Brosius, J. BC200 RNA: a neural RNA polymerase III product encoded by a monomeric Alu element. Proc. Natl Acad. Sci. USA90, 11563–11567 (1993). ArticleCASPubMedPubMed Central Google Scholar
Zhang, J., Webb, D. M. & Podlaha, O. Accelerated protein evolution and origins of human-specific features: Foxp2 as an example. Genetics162, 1825–1835 (2002). CASPubMedPubMed Central Google Scholar
Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature418, 869–872 (2002). ArticleCASPubMed Google Scholar
Brosius, J. & Gould, S. J. On “genomenclature”: a comprehensive (and respectful) taxonomy for pseudogenes and other “junk DNA”. Proc. Natl Acad. Sci. USA89, 10706–10710 (1992). ArticleCASPubMedPubMed Central Google Scholar
Gogolevskaya, I. K. & Kramerov, D. A. Evolutionary history of 4.5SI RNA and indication that it is functional. J. Mol. Evol.54, 354–364 (2002). ArticleCASPubMed Google Scholar
Long, M. Protein-coding segments: evolution of exon–intron gene structure. Nature Encyclopedia of Life Sciences [online], <http://www.els.net> (doi:10.1038/npg.els.0000887) (2000).