The genetics of inbreeding depression (original) (raw)
Darwin, C. R. The Effects of Cross and Self Fertilization in the Vegetable Kingdom (John Murray, London, 1876). Book Google Scholar
Darwin, C. R. The Various Contrivances by which Orchids are Fertilised by Insects. (John Murray, London, 1862). Google Scholar
Darwin, C. R. The Different Forms of Flowers on Plants of the Same Species (John Murray, London, 1877). Book Google Scholar
McCune, A. R. et al. A low genomic number of recessive lethals in natural populations of bluefin killifish and zebrafish. Science296, 2398–2401 (2002). ArticleCASPubMed Google Scholar
Zhang, H.-Y. et al. A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. Mol. Plant1, 720–731 (2008). A fascinating, detailed study of gene expression differences in rice, together with information about DNA sequence differences in non-coding regions that are adjacent to genes. It also contains clear models that show the possible expression patterns that can arise. ArticleCASPubMed Google Scholar
Duvick, D. N. Biotechnology in the 1930s: the development of hybrid maize. Nature Rev. Genet.2, 69–74 (2000). Article Google Scholar
Grossniklaus, U., Nogler, G. A. & Dijk, P. J. v. How to avoid sex: the genetic control of gametophytic apomixis. Plant Cell13, 1491–1498 (2004). Google Scholar
Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, New York, 1974). Google Scholar
Crow, J. F. Mutation, mean fitness, and genetic load. Oxf. Surv. Evol. Biol.9, 3–42 (1993). Google Scholar
Barrière, A. et al. Detecting heterozygosity in shotgun genome assemblies: lessons from obligately outcrossing nematodes. Genome Res.19, 470–480 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Sved, J. A. An estimate of heterosis in Drosophila melanogaster. Genet. Res.18, 97–105 (1971). ArticleCASPubMed Google Scholar
Latter, B., Mulley, J., Reid, D. & Pascoe, L. Reduced genetic load revealed by slow inbreeding in Drosophila melanogaster. Genetics139, 287–297 (1998). Article Google Scholar
Willis, J. H. Genetic analysis of inbreeding depression caused by chlorophyll-deficient lethals in Mimulus guttatus. Heredity69, 562–572 (1992). Article Google Scholar
Klekowski, E. J., Lowenfeld, R. L. & Hepler, P. K. Mangrove genetics II. Outcrossing and lower spontaneous mutation rates in Puerto Rican Rhizophora. Int. J. Plant Sci.155, 373–381 (1994). Article Google Scholar
Ohnishi, O. Population genetics of cultivated buckwheat, Fagopyrum esculentum Moench. I. Frequency of chlorophyll-deficient mutants in Japanese populations. Jpn J. Genet.57, 623–639 (1982). Article Google Scholar
Ohnishi, O. Population genetics of cultivated buckwheat, Fagopyrum esculentum Moench. III. Frequency of sterility mutants in Japanese populations. Jpn J. Genet.60, 391–404 (1985). Article Google Scholar
Willis, J. H. The contribution of male sterility mutations to inbreeding depression in Mimulus guttatus. Heredity83, 337–346 (1999). This genetic study extends the evidence for large-effect mutations that segregate in natural populations to species other thanD. melanogaster. ArticlePubMed Google Scholar
Werren, J. in The Natural History of Inbreeding and Outbreeding (ed. Thornhill, N. W.) 42–59 (Univ. Chicago Press, 1993). Google Scholar
Henter, H. J. Inbreeding depression and haplodiploidy: experimental measures in a parasitoid and comparisons across diploid and haplodiploid insect taxa. Evolution57, 1793–1803 (2003). ArticlePubMed Google Scholar
Fisher, R. A. Average excess and average effect of a gene substitution. Ann. Eugen.11, 53–63 (1941). An important theoretical paper that first introduced and showed the genetic transmission advantage of inbreeding. Article Google Scholar
Nagylaki, T. A model for the evolution of self fertilization and vegetative reproduction. J. Theor. Biol.58, 55–58 (1976). ArticleCASPubMed Google Scholar
Stebbins, G. L. Variation and Evolution in Plants (Columbia Univ. Press, New York, 1950). Book Google Scholar
Lloyd, D. G. Some reproductive factors affecting the selection of self-fertilization in plants. Am. Nat.113, 67–79 (1979). Article Google Scholar
Porcher, E. & Lande, R. The evolution of self-fertilization and inbreeding depression under pollen discounting and pollen limitation. J. Evol. Biol.18, 497–508 (2005). An important, integrated model of outcrossing rate evolution that includes several biologically relevant processes. ArticleCASPubMed Google Scholar
Charlesworth, D. & Charlesworth, B. Inbreeding depression with heterozygote advantage and its effect on selection for modifiers changing the outcrossing rate. Evolution44, 870–888 (1990). ArticleCASPubMed Google Scholar
Johnston, M. O. et al. Correlations among fertility components can maintain mixed mating in plants. Am. Nat.173, 1–11 (2009). ArticlePubMed Google Scholar
Byers, D. L. & Waller, D. M. Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu. Rev. Ecol. Syst.30, 479–513 (1999). Article Google Scholar
Carr, D. E. & Dudash, M. Recent approaches into the genetic basis of inbreeding depression in plants. Philos. Trans. R. Soc. Lond. B358, 1071–1084 (2003). ArticleCAS Google Scholar
Crnokrak, P. & Barrett, S. C. D. Perspective: purging the genetic load: a review of the experimental evidence. Evolution56, 2347–2358 (2002). ArticlePubMed Google Scholar
Charlesworth, B., Charlesworth, D. & Morgan, M. T. Genetic loads and estimates of mutation rates in very inbred plant populations. Nature347, 380–382 (1990). Article Google Scholar
Ohta, T. & Cockerham, C. C. Detrimental genes with partial selfing and effects on a neutral locus. Genet. Res.23, 191–200 (1974). Article Google Scholar
Wang, J., Hill, W. G., Charlesworth, D. & Charlesworth, B. Dynamics of inbreeding depression due to deleterious mutations in small populations: I. Mutation parameters and inbreeding rate. Genet. Res.74, 165–178 (1999). ArticleCASPubMed Google Scholar
Charlesworth, D., Morgan, M. T. & Charlesworth, B. Inbreeding depression, genetic load and the evolution of outcrossing rates in a multi-locus system with no linkage. Evolution44, 1469–1489 (1990). ArticleCASPubMed Google Scholar
Willis, J. H. The role of genes of large effect on inbreeding depression in Mimulus guttatus. Evolution53, 1678–1691 (1999). An ingenious experimental approach to understanding how much inbreeding depression can be accounted for by large-effect deleterious mutations. ArticleCASPubMed Google Scholar
Fox, C. W., Scheibly, K. L. & Reed, D. H. Experimental evolution of the genetic load and its implications for the genetic basis of inbreeding depression. Evolution62, 2236–2249 (2008). ArticlePubMed Google Scholar
Moll, R. H., Cock, C. C., Stuber, C. W. & Williams, W. P. Selection responses, genetic–environmental interactions, and heterosis with recurrent selection for yield in maize. Crop Sci.18, 641–645 (1978). Article Google Scholar
Charlesworth, D. & Charlesworth, B. Inbreeding depression and its evolutionary consequences. Ann. Rev. Ecol. Syst.18, 237–268 (1987). Article Google Scholar
Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman, Harlow, 1996). Google Scholar
Haldane, J. B. S. Parental and fraternal correlations in fitness. Ann. Eugen.14, 288–292 (1949). ArticleCASPubMed Google Scholar
Houle, D., Hoffmaster, D. K., Assimacopoulos, S. & Charlesworth, B. The genomic rate of mutation for fitness in Drosophila. Nature359, 58–60 (1992). ArticleCASPubMed Google Scholar
Mukai, T., Cardellino, R. A., Watanabe, T. K. & Crow, J. F. The genetic variance for viability and its components in a local population of Drosophila melanogaster. Genetics78, 1195–1208 (1974). ArticleCASPubMedPubMed Central Google Scholar
Charlesworth, B., Miyo, T. & Borthwick, H. Selection responses of means and inbreeding depression for female fecundity in Drosophila melanogaster suggest contributions from intermediate-frequency alleles to quantitative trait variation. Genet. Res.89, 85–91 (2007). ArticleCASPubMed Google Scholar
Charlesworth, B. & Hughes, K. A. in Evolutionary Genetics: From Molecules to Morphology (eds Singh, R. S. & Krimbas, C. B.) 369–392 (Cambridge Univ. Press, 2000). Google Scholar
Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl Acad. Sci. USA93, 6140–6145 (1996). ArticleCASPubMedPubMed Central Google Scholar
Charlesworth, B. & Charlesworth, D. The genetic basis of inbreeding depression. Genet. Res.74, 329–340 (1999). ArticleCASPubMed Google Scholar
Kelly, J. K. & Willis, J. H. Deleterious mutations and genetic variation for flower size in Mimulus guttatus. Evolution55, 937–942 (2001). ArticleCASPubMed Google Scholar
Kelly, J. K. Deleterious mutations and the genetic variance of male fitness components in Mimulus guttatus. Genetics164, 1071–1085 (2003). An integrated analysis that uses quantitative genetic approaches to detect the effects of deleterious mutations on a fitness-related character. ArticlePubMedPubMed Central Google Scholar
Schultz, S. & Willis, J. H. Individual variation in inbreeding depression: the roles of inbreeding history and mutation. Genetics141, 1209–1223 (1995). The authors extend models that are used to predict the overall average inbreeding depression to predict the distribution of effects. ArticleCASPubMedPubMed Central Google Scholar
Stuber, C. W., Lincoln, S. E., Wolff, D. W., Helentjaris, T. & Lander, E. S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics132, 823–839 (1992). ArticleCASPubMedPubMed Central Google Scholar
Garcia, A., Wang, S., Melchinger, A. E. & Zeng, Z. B. Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics180, 1707–1724 (2008). ArticlePubMedPubMed Central Google Scholar
Graham, G., Wolff, D. & Stuber, C. Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Sci.37, 1601–1610 (1997). ArticleCAS Google Scholar
Latter, B. Mutant alleles of small effect are primarily responsible for the loss of fitness with slow inbreeding in Drosophila melanogaster. Genetics148, 1143–1158 (1998). ArticleCASPubMedPubMed Central Google Scholar
Noor, M. A. F., Cunningham, A. & Larkin, J. Consequences of recombination rate variation on quantitative trait locus mapping studies: simulations based on the Drosophila melanogaster genome. Genetics159, 581–588 (2001). ArticleCASPubMedPubMed Central Google Scholar
McMullen, M. D. et al. Genetic properties of the maize nested association mapping population. Science325, 737–740 (2009). ArticleCASPubMed Google Scholar
Radoev, M., Becker, H. & Ecke, W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics179, 1547–1558 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wright, S. Evolution and the Genetics of Populations Vol. 3 (Univ. Chicago Press, 1977). Google Scholar
Redei, G. P. Single locus heterosis. Z. Indukt. Abstamm. Vererbungsl.93, 164–170 (1962). Google Scholar
Schuler, J. F. Natural mutations in inbred lines of maize and their heterotic effect. I. Comparison of parent, mutant and their F1 hybrid in a highly inbred background. Genetics39, 908–922 (1954). ArticleCASPubMedPubMed Central Google Scholar
Schuler, J. F. & Sprague, G. F. Natural mutations in inbred lines of maize and their heterotic effect. II. Comparison of mother line versus mutant when outcrossed to related inbreds. Genetics41, 281–291 (1955). An important early test to distinguish between true overdominance and pseudo-overdominance. Article Google Scholar
Xiao, J., Li, J., Yuan, L. & Tanksley, S. Dominance is the major genetic-basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics140, 745–754 (1995). ArticleCASPubMedPubMed Central Google Scholar
Li, Z., Pinson, S. R. M., Park, W. D., Patterson, A. H. & Stansel, J. W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics145, 453–465 (1997). ArticleCASPubMedPubMed Central Google Scholar
Li, Z. et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics158, 1737–1753 (2001). ArticleCASPubMedPubMed Central Google Scholar
Luo, X. et al. Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice. J. Integr. Plant Biol.51, 393–408 (2009). ArticlePubMed Google Scholar
Kusterer, B. et al. Heterosis for biomass-related traits in Arabidopsis investigated by quantitative trait loci analysis of the triple testcross design with recombinant inbred lines. Genetics177, 1839–1850 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kusterer, B. et al. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics175, 2009–2017 (2007). ArticleCASPubMedPubMed Central Google Scholar
Melchinger, A. E. et al. Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics177, 1827–1837 (2007). ArticlePubMedPubMed Central Google Scholar
Semel, Y. et al. Overdominant quantitative trait loci for yield and fitness in tomato. Proc. Natl Acad. Sci. USA103, 12981–12986 (2006). ArticleCASPubMedPubMed Central Google Scholar
Nakazato, T., Bogonovich, M. & Moyle, L. C. Environmental factors predict adaptive phenotypic differentiation within and between two wild Andean tomatoes. Evolution62, 774–792 (2008). ArticleCASPubMed Google Scholar
Eshed, Y. & Zamir, D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics141, 1147–1162 (1995). ArticleCASPubMedPubMed Central Google Scholar
Remington, D. & O'Malley, D. Whole-genome characterization of embryonic stage inbreeding depression in a selfed loblolly pine family. Genetics155, 337–348 (2000). ArticleCASPubMedPubMed Central Google Scholar
Remington, D. & O'Malley, D. Evaluation of major genetic loci contributing to inbreeding depression for survival and early growth in a selfed family of Pinus taeda. Evolution54, 1580–1589 (2000). ArticleCASPubMed Google Scholar
Springer, N. & Stupar, R. Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res.17, 264–275 (2007). ArticleCASPubMed Google Scholar
Song, X., Ni, Z., Yao, Y., Zhang, Y. & Sun, Q. Identification of differentially expressed proteins between hybrid and parents in wheat (Triticum aestivum L.) seedling leaves. Theor. Appl. Genet.118, 213–225 (2009). ArticleCASPubMed Google Scholar
Swanson-Wagner, R. A. et al. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proc. Natl Acad. Sci. USA103, 6805–6810 (2006). ArticleCASPubMedPubMed Central Google Scholar
Uzarowska, A. et al. Comparative expression profiling in meristems of inbred-hybrid triplets of maize based on morphological investigations of heterosis for plant height. Plant Mol. Biol.63, 21–34 (2007). ArticleCASPubMed Google Scholar
Guo, M. et al. Genome-wide transcript analysis of maize hybrids: allelic additive gene expression and yield heterosis. Theor. Appl. Genet.113, 831–845 (2006). ArticleCASPubMed Google Scholar
Stupar, R. M. et al. Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol.8, 33 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Lemos, B., Araripe, L. O., Fontanillas, P. & Hartl, D. L. Dominance and the evolutionary accumulation of _cis_- and _trans_-effects on gene expression. Proc. Natl Acad. Sci. USA105, 14471–14476 (2008). ArticleCASPubMedPubMed Central Google Scholar
Zhao, X., Chai, Y. & Liu, B. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids. Plant Sci.172, 930–938 (2007). ArticleCAS Google Scholar
Frazer, K. A., Murray, S. S., Schork, N. J. & Topol, E. J. Human genetic variation and its contribution to complex traits. Nature Rev. Genet.10, 241–251 (2009). ArticleCASPubMed Google Scholar
Valdar, W., Flint, J. & Mott, R. Simulating the collaborative cross: power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics172, 1783–1797 (2006). ArticleCASPubMedPubMed Central Google Scholar
Valdar, W. et al. Genome-wide genetic association of complex traits in heterogeneous stock mice. Nature Genet.38, 879–887 (2006). ArticleCASPubMed Google Scholar
Macdonald, S. & Long, A. Joint estimates of quantitative trait locus effect and frequency using synthetic recombinant populations of Drosophila melanogaster. Genetics176, 1261–1281 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gruber, J. D., Genissel, A., Macdonald, S. & Long, A. How repeatable are associations between polymorphisms in achaete–scute and bristle number variation in Drosophila? Genetics175, 1987–1997 (2007). ArticleCASPubMedPubMed Central Google Scholar
Currat, M. et al. Molecular analysis of the β-globin gene cluster in the Niokholo Mandenka population reveals a recent origin of the βS Senegal mutation. Am. J. Hum. Genet.70, 207–223 (2002). ArticleCASPubMed Google Scholar
Hamblin, M. T. & Rienzo, A. D. Detection of the signature of natural selection in humans: evidence from the Duffy blood group locus. Am. J. Hum. Genet.66, 1669–1679 (2000). ArticleCASPubMedPubMed Central Google Scholar
Helgason, A., Pálsson, S., GuÐbjartsson, D. F., Kristjánsson, þ . & Stefánsson, K. An association between the kinship and fertility of human couples. Science319, 813–816 (2008). ArticleCASPubMed Google Scholar
Bittles, A. H. & Neel, J. V. The costs of human inbreeding and their implications for variations at the DNA level. Nature Genet.8, 117–121 (1994). ArticleCASPubMed Google Scholar
Stoltenberg, C., Magnus, P., Skrondal, A. & Lie, R. Consanguinity and recurrence risk of stillbirth and infant death. Am. J. Public Health89, 517–523 (1999). ArticleCASPubMedPubMed Central Google Scholar
Stoltenberg, C., Magnus, P., Skrondal, A. & Lie, R. Consanguinity and recurrence risk of birth defects: a population-based study. Am. J. Med. Genet.82, 423–428 (1999). ArticleCASPubMed Google Scholar
Weeks, S. C., Reed, S., Ott, D. & Scanabissi, F. Inbreeding effects on sperm production in clam shrimp (Eulimnadia texana). Evol. Ecol. Res.11, 125–134 (2009). Google Scholar
Hoare, K. & Hughes, R. N. Inbreeding and hermaphroditism in the sessile, brooding bryozoan Celleporella hyalina. Mar. Biol.139, 147–162 (2001). Article Google Scholar
Husband, B. C. & Schemske, D. W. Evolution of the magnitude and timing of inbreeding depression in plants. Evolution50, 54–70 (1995). Article Google Scholar
Escobar, J., Nicot, A. & David, P. The different sources of variation in inbreeding depression, heterosis and outbreeding depression in a metapopulation of Physa acuta. Genetics180, 1593–1608 (2008). ArticlePubMedPubMed Central Google Scholar
Dolgin, E., Charlesworth, B., Baird, S. & Cutter, A. Inbreeding and outbreeding depression in Caenorhabditis nematodes. Evolution61, 1339–1352 (2007). ArticlePubMed Google Scholar
Weller, S. G., Sakai, A. K., Thai, D. A., Tom, J. & Rankin, A. E. Inbreeding depression and heterosis in populations of Schiedea viscosa, a highly selfing species. J. Evol. Biol.18, 1434–1444 (2005). ArticleCASPubMed Google Scholar
Richards, C. Inbreeding depression and genetic rescue in a plant metapopulation Am. Nat.155, 383–394 (2000). ArticlePubMed Google Scholar
Crow, J. F. & Simmons, M. J. in The Genetics and Biology of Drosophila (eds Ashburner, M., Carson, H. L. & Thompson, J. N.) 1–35 (Academic Press, London, 1983). Google Scholar
Hoffmann, A. A. & Rieseberg, L. H. Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation. Ann. Rev. Ecol. Evol. Syst.39, 21–42 (2008). Article Google Scholar
Dyer, K. A., Charlesworth, B. & Jaenike, J. Chromosome-wide linkage disequilibrium as a consequence of meiotic drive Proc. Natl Acad. Sci. USA104, 1587–1592 (2007). ArticleCASPubMedPubMed Central Google Scholar
Glemin, S., Bataillon, T., Ronfort, J., Mignot, A. & Olivieri, I. Inbreeding depression in small populations of self-incompatible plants. Genetics159, 1217–1229 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pankey, M. & Wares, J. Overdominant maintenance of diversity in the sea star Pisaster ochraceus. J. Evol. Biol.22, 80–87 (2009). ArticleCASPubMed Google Scholar
Scoville, A., Lee, Y. W., Willis, J. H. & Kelly, J. K. The contribution of chromosomal polymorphisms to the G-matrix of Mimulus guttatus. New Phytol.183, 803–815 (2009). ArticlePubMedPubMed Central Google Scholar
Fishman, L. & Saunders, A. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science322, 1559–1562 (2008). ArticleCASPubMed Google Scholar
Bataillon, T. & Kirkpatrick, M. Inbreeding depression due to mildly deleterious mutations in finite populations: size does matter. Genet. Res.75, 75–81 (2000). ArticleCASPubMed Google Scholar
Glémin, S., Ronfort, J. & Bataillon, T. Patterns of inbreeding depression and architecture of the load in subdivided populations. Genetics165, 2193–2212 (2003). By analysing a model of deleterious mutations in a biologically realistic model of population structure, the authors reveal heterosis in inter-population crosses and within-population inbreeding depression. ArticlePubMedPubMed Central Google Scholar
Schierup, M. H., Vekemans, X. & Charlesworth, D. The effect of subdivision on variation at multi-allelic loci under balancing selection. Genet. Res.76, 51–62 (2000). ArticleCASPubMed Google Scholar
Coyne, J. A. & Orr, H. A. Speciation (Sinauer, Sunderland, 2004). Google Scholar
Song, L., Guo, W. & Zhang, T. Interaction of novel Dobzhansky–Muller type genes for the induction of hybrid lethality between Gossypium hirsutum and G. barbadense cv. Coastland R4-4. Theor. Appl. Genet.119, 33–41 (2009). ArticleCASPubMed Google Scholar
Bomblies, K., Lempe, J., Dangl, J. & Weigel, D. Autoimmune response as a mechanism for a Dobzhansky–Muller-type incompatibility syndrome in plants. PLoS Biol.5, 1962–1972 (2007). ArticleCAS Google Scholar
Seidel, H. S., Rockman, M. V. & Kruglyak, L. Widespread genetic incompatibility in C. elegans maintained by balancing selection. Science319, 589–594 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hurst, L. D. Genetics and the understanding of selection. Nature Rev. Genet.10, 83–93 (2009). ArticleCASPubMed Google Scholar
Yang, J., Gu, Z. & Li, W. Rate of protein evolution versus fitness effect of gene deletion. Mol. Biol. Evol.20, 772–774 (2003). ArticlePubMedCAS Google Scholar
Kondrashov, A. S. & Crow, J. F. A molecular approach to estimating the human deleterious mutation-rate. Hum. Mutat.2, 229–234 (1993). ArticleCASPubMed Google Scholar
Keightley, P. D. & Eyre-Walker, A. Deleterious mutations and the evolution of sex. Science290, 331–333 (2000). ArticleCASPubMed Google Scholar
Haag-Liautard, C. et al. Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature445, 82–85 (2007). This paper provides direct evidence that the deleterious mutation rate is high inD. melanogaster. ArticleCASPubMed Google Scholar
Haddrill, P. R., Charlesworth, B., Halligan, D. L. & Andolfatto, P. Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content. Genome Biol.6, R67 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Katzman, S. et al. Human genome ultraconserved elements are ultraselected. Science317, 915 (2007). ArticleCASPubMed Google Scholar
Parmley, J. L., Chamary, J. V. & Hurst, L. D. Evidence for purifying selection against synonymous mutations in mammalian exonic splicing enhancers. Mol. Biol. Evol.23, 301–309 (2006). ArticleCASPubMed Google Scholar
Keightley, P. D., Kryukov, G. V., Sunyaev, S., Halligan, D. L. & Gaffney, D. J. Evolutionary constraints in conserved nongenic sequences of mammals. Genome Res.15, 1373–1378 (2006). ArticleCAS Google Scholar
Asthana, S. et al. Widely distributed noncoding purifying selection in the human genome. Proc. Natl Acad. Sci. USA104, 12410–12415 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wright, S. & Andolfatto, P. The impact of natural selection on the genome: emerging patterns in Drosophila and Arabidopsis. Annu. Rev. Ecol. Evol. Syst.39, 193–213 (2008). Article Google Scholar
Eyre-Walker, A., Woolfit, M. & Phelps, T. The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics173, 891–900 (2006). The authors make sophisticated use of population genetics theory to estimate the distribution (rather than the average value) of selection coefficients of deleterious mutations. ArticleCASPubMedPubMed Central Google Scholar
Loewe, L. & Charlesworth, B. Inferring the distribution of mutational effects on fitness in Drosophila. Biol. Lett.2, 426–430 (2006). ArticlePubMedPubMed Central Google Scholar
Keightley, P. & Eyre-Walker, A. Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies. Genetics177, 2251–2261 (2007). ArticleCASPubMedPubMed Central Google Scholar
Asthana, S., Schmidt, S. & Sunyaev, S. A limited role for balancing selection. Trends Genet.21, 30–32 (2005). References 136 and 137 give evidence that overdominance is not common. ArticleCASPubMed Google Scholar
Fumagalli, M. et al. Widespread balancing selection and pathogen-driven selection at blood group antigen genes. Genome Res.19, 199–212 (2009). ArticleCASPubMedPubMed Central Google Scholar
Calafell, F. et al. Evolutionary dynamics of the human ABO gene. Hum. Genet.124, 123–135 (2008). ArticlePubMed Google Scholar
Moss, D., Arce, S., Otoshi, C. & Moss, S. Inbreeding effects on hatchery and growout performance of Pacific white shrimp, Penaeus (Litopenaeus) vannamei. J. World Aquacult. Soc.39, 467–476 (2008). Article Google Scholar
Richards, C. M., Church, S. & McCauley, D. E. The influence of population size and isolation on gene flow by pollen in Silene alba. Evolution53, 63–73 (1999). ArticlePubMed Google Scholar
Mori, K., Saito, Y., Sakagami, T. & Sahara, K. Inbreeding depression of female fecundity by genetic factors retained in natural populations of a male-haploid social mite (Acari: Tetranychidae). Exp. Appl. Acarol.39, 15–23 (2005). Article Google Scholar
Schneller, J. J. & Holderegger, R. Vigor and survival of inbred and outbred progeny of Athyrium filix-femina. Int. J. Plant Sci.158, 79–82 (1997). Article Google Scholar
Klekowski, E. J. Genetic load in Osmunda regalis populations. Am. J. Bot.60, 146–154 (1973). The studies reported in references 143 and 144 show evidence for recessive large-effect deleterious mutations in natural populations of ferns, a type of organism that should be more widely used in such studies. Article Google Scholar
Keller, L. F. Inbreeding and its fitness effects in an insular population of song sparrows (Melospiza melodia). Evolution52, 240–250 (1998). PubMed Google Scholar
Ritland, K. Inferences about inbreeding depression based upon changes of the inbreeding coefficient. Evolution44, 1230–1241 (1990). ArticlePubMed Google Scholar
Liautard, C. & Sundstrom, L. Estimation of individual level of inbreeding using relatedness measures in haplodiploids. Insectes Soc.52, 323–326 (2005). Article Google Scholar
Camara, M., Evans, S. & Langdon, C. Parental relatedness and survival of Pacific oysters from a naturalized population. J. Shellfish Res.27, 323–336 (2008). Article Google Scholar
Herlihy, C. R. & Eckert, C. G. Genetic cost of reproductive assurance in a self-fertilizing plant. Nature416, 320–323 (2002). ArticleCASPubMed Google Scholar
Bierne, N., S. Launey, Y. Naciri-Graven & Bonhomme, F. Early effect of inbreeding as revealed by microsatellite analyses on Ostrea edulis larvae. Genetics148, 1893–1906 (2000). Article Google Scholar
Fu, Y.-B. & Ritland, K. Evidence for the partial dominance of viability genes in Mimulus guttatus. Genetics136, 323–331 (1993). Article Google Scholar
Fu, Y.-B. & Ritland, K. On estimating the linkage of marker genes to viability genes controlling inbreeding depression. Theor. Appl. Genet.88, 925–932 (1994). ArticleCASPubMed Google Scholar
Haag, C. & Ebert, D. D. Genotypic selection in Daphnia populations consisting of inbred sibships. J. Evol. Biol.20, 881–891 (2007). ArticleCASPubMed Google Scholar