- Roeder, R. G. Transcriptional regulation and the role of diverse coactivators in animal cells. FEBS Lett. 579, 909–915 (2005).
CAS PubMed Google Scholar
- Kornberg, R. D. Mediator and the mechanism of transcriptional activation. Trends Biochem. Sci. 30, 235–239 (2005).
CAS PubMed Google Scholar
- Malik, S. & Roeder, R. G. Dynamic regulation of Pol II transcription by the mammalian Mediator complex. Trends Biochem. Sci. 30, 256–263 (2005).
CAS PubMed Google Scholar
- Malik, S. & Roeder, R. G. Transcriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends Biochem. Sci. 25, 277–283 (2000).
CAS PubMed Google Scholar
- Lee, T. I. & Young, R. A. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34, 77–137 (2000).
CAS PubMed Google Scholar
- Myers, L. C. & Kornberg, R. D. Mediator of transcriptional regulation. Annu. Rev. Biochem. 69, 729–749 (2000). References 5 and 6 review seminal studies in yeast that identified the Mediator complex in this organism.
CAS PubMed Google Scholar
- Bourbon, H. M. Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Res. 36, 3993–4008 (2008).
CAS PubMed PubMed Central Google Scholar
- Sato, S. et al. A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol. Cell 14, 685–691 (2004). This paper helped to resolve the problem of compositional heterogeneity that accompanied early studies reporting Mediator isolation. It also helped establish the near-final subunit composition of the mammalian Mediator complex.
CAS PubMed Google Scholar
- Backstrom, S., Elfving, N., Nilsson, R., Wingsle, G. & Bjorklund, S. Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol. Cell 26, 717–729 (2007).
PubMed Google Scholar
- Guglielmi, B. et al. A high resolution protein interaction map of the yeast Mediator complex. Nucleic Acids Res. 32, 5379–5391 (2004).
CAS PubMed PubMed Central Google Scholar
- Cai, G., Imasaki, T., Takagi, Y. & Asturias, F. J. Mediator structural conservation and implications for the regulation mechanism. Structure 17, 559–567 (2009).
CAS PubMed PubMed Central Google Scholar
- Takagi, Y. et al. Head module control of Mediator interactions. Mol. Cell 23, 355–364 (2006).
CAS PubMed Google Scholar
- Fondell, J. D., Ge, H. & Roeder, R. G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl Acad. Sci. USA 93, 8329–8333 (1996). This paper first identified the human Mediator complex in association with ligand-bound thyroid hormone receptor and helped establish the paradigm of the Mediator as an interface between transcriptional activators and the Pol II machinery.
CAS PubMed PubMed Central Google Scholar
- Malik, S., Gu, W., Wu, W., Qin, J. & Roeder, R. G. The USA-derived transcriptional coactivator PC2 is a submodule of TRAP/SMCC and acts synergistically with other PCs. Mol. Cell 5, 753–760 (2000).
CAS PubMed Google Scholar
- Malik, S., Baek, H. J., Wu, W. & Roeder, R. G. Structural and functional characterization of PC2 and RNA polymerase II-associated subpopulations of metazoan Mediator. Mol. Cell. Biol. 25, 2117–2129 (2005).
CAS PubMed PubMed Central Google Scholar
- Elmlund, H. et al. The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II. Proc. Natl Acad. Sci. USA 103, 15788–15793 (2006).
CAS PubMed PubMed Central Google Scholar
- Knuesel, M. T., Meyer, K. D., Bernecky, C. & Taatjes, D. J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 23, 439–451 (2009).
CAS PubMed PubMed Central Google Scholar
- Tsutsui, T. et al. Human mediator kinase subunit CDK11 plays a negative role in viral activator VP16-dependent transcriptional regulation. Genes Cells 13, 817–826 (2008).
CAS PubMed Google Scholar
- Zhang, X. et al. MED1/TRAP220 exists predominantly in a TRAP/ Mediator subpopulation enriched in RNA polymerase II and is required for ER-mediated transcription. Mol. Cell 19, 89–100 (2005).
CAS PubMed Google Scholar
- Jiang, P. et al. Key roles for MED1 LxxLL motifs in pubertal mammary gland development and luminal-cell differentiation. Proc. Natl Acad. Sci. USA 107, 6765–6770 (2010).
CAS PubMed PubMed Central Google Scholar
- Toth-Petroczy, A. et al. Malleable machines in transcription regulation: the Mediator complex. PLoS Comput. Biol. 4, e1000243 (2008).
PubMed PubMed Central Google Scholar
- Ryu, S., Zhou, S., Ladurner, A. G. & Tjian, R. The transcriptional cofactor complex CRSP is required for activity of the enhancer-binding protein Sp1. Nature 397, 446–450 (1999).
CAS PubMed Google Scholar
- Blazek, E., Mittler, G. & Meisterernst, M. The Mediator of RNA polymerase II. Chromosoma 113, 399–408 (2005).
CAS PubMed Google Scholar
- Mangelsdorf, D. J. et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).
CAS PubMed PubMed Central Google Scholar
- Glass, C. K. & Rosenfeld, M. G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).
CAS PubMed Google Scholar
- Rachez, C. et al. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 398, 824–828 (1999).
CAS PubMed Google Scholar
- Ge, K. et al. Transcription coactivator TRAP220 is required for PPAR γ 2-stimulated adipogenesis. Nature 417, 563–567 (2002). This physiological study showed how distinct subunits in the Mediator complex can control specific developmental and signalling pathways.
CAS PubMed Google Scholar
- Ge, K. et al. Alternative mechanisms by which Mediator subunit MED1/TRAP220 regulates peroxisome proliferator-activated receptor γ-stimulated adipogenesis and target gene expression. Mol. Cell. Biol. 28, 1081–1091 (2008).
CAS PubMed Google Scholar
- Malik, S., Wallberg, A. E., Kang, Y. K. & Roeder, R. G. TRAP/SMCC/Mediator-dependent transcriptional activation from DNA and chromatin templates by orphan nuclear receptor hepatocyte nuclear factor 4. Mol. Cell. Biol. 22, 5626–5637 (2002).
CAS PubMed PubMed Central Google Scholar
- Hittelman, A. B., Burakov, D., Iniguez-Lluhi, J. A., Freedman, L. P. & Garabedian, M. J. Differential regulation of glucocorticoid receptor transcriptional activation via AF-1-associated proteins. EMBO J. 18, 5380–5388 (1999).
CAS PubMed PubMed Central Google Scholar
- Kang, Y. K., Guermah, M., Yuan, C. X. & Roeder, R. G. The TRAP/Mediator coactivator complex interacts directly with estrogen receptors α and β through the TRAP220 subunit and directly enhances estrogen receptor function in vitro. Proc. Natl Acad. Sci. USA 99, 2642–2647 (2002).
CAS PubMed PubMed Central Google Scholar
- Malik, S. et al. Structural and functional organization of TRAP220, the TRAP/Mediator subunit that is targeted by nuclear receptors. Mol. Cell. Biol. 24, 8244–8254 (2004).
CAS PubMed PubMed Central Google Scholar
- Ito, M., Yuan, C. X., Okano, H. J., Darnell, R. B. & Roeder, R. G. Involvement of the TRAP220 component of the TRAP/SMCC coactivator complex in embryonic development and thyroid hormone action. Mol. Cell 5, 683–693 (2000). This mouse knockout study showed how distinct subunits in the Mediator complex can control specific developmental and signalling pathways.
CAS PubMed Google Scholar
- Grontved, L., Madsen, M. S., Boergesen, M., Roeder, R. G. & Mandrup, S. MED14 tethers Mediator to the N-terminal domain of peroxisome proliferator-activated receptor γ and is required for full transcriptional activity and adipogenesis. Mol. Cell. Biol. 30, 2155–2169 (2010).
PubMed PubMed Central Google Scholar
- Stumpf, M. et al. The Mediator complex functions as a coactivator for GATA-1 in erythropoiesis via subunit Med1/TRAP220. Proc. Natl Acad. Sci. USA 103, 18504–18509 (2006).
CAS PubMed PubMed Central Google Scholar
- Boyer, T. G., Martin, M. E., Lees, E., Ricciardi, R. P. & Berk, A. J. Mammalian Srb/Mediator complex is targeted by adenovirus E1A protein. Nature 399, 276–279 (1999).
CAS PubMed Google Scholar
- Wang, G. et al. Mediator requirement for both recruitment and postrecruitment steps in transcription initiation. Mol. Cell 17, 683–694 (2005).
CAS PubMed Google Scholar
- Wang, W. et al. Mediator MED23 links insulin signaling to the adipogenesis transcription cascade. Dev. Cell 16, 764–771 (2009).
CAS PubMed PubMed Central Google Scholar
- Yang, F. et al. An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442, 700–704 (2006).
CAS PubMed Google Scholar
- Taubert, S., Van Gilst, M. R., Hansen, M. & Yamamoto, K. R. A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans. Genes Dev. 20, 1137–1149 (2006).
CAS PubMed PubMed Central Google Scholar
- Thakur, J. K. et al. Mediator subunit Gal11p/MED15 is required for fatty acid-dependent gene activation by yeast transcription factor Oaf1p. J. Biol. Chem. 284, 4422–4428 (2009).
CAS PubMed Google Scholar
- Kato, Y., Habas, R., Katsuyama, Y., Naar, A. M. & He, X. A component of the ARC/Mediator complex required for TGF β/Nodal signalling. Nature 418, 641–646 (2002).
CAS PubMed Google Scholar
- Ito, M., Okano, H. J., Darnell, R. B. & Roeder, R. G. The TRAP100 component of the TRAP/Mediator complex is essential in broad transcriptional events and development. EMBO J. 21, 3464–3475 (2002).
CAS PubMed PubMed Central Google Scholar
- Stevens, J. L., Cantin, G. T., Wang, G., Shevchenko, A. & Berk, A. J. Transcription control by E1A and MAP kinase pathway via Sur2 Mediator subunit. Science 296, 755–758 (2002). This knockout study showed how distinct subunits in the Mediator complex can control specific developmental and signalling pathways.
CAS PubMed Google Scholar
- Carlson, M. Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Annu. Rev. Cell Dev. Biol. 13, 1–23 (1997).
CAS PubMed Google Scholar
- Ito, M. et al. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol. Cell 3, 361–370 (1999).
CAS PubMed Google Scholar
- Park, J. M., Werner, J., Kim, J. M., Lis, J. T. & Kim, Y. J. Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock. Mol. Cell 8, 9–19 (2001).
CAS PubMed Google Scholar
- Meyer, K. D., Lin, S. C., Bernecky, C., Gao, Y. & Taatjes, D. J. p53 activates transcription by directing structural shifts in Mediator. Nature Struct. Mol. Biol. 17, 753–760 (2010).
CAS Google Scholar
- Mittler, G. et al. A novel docking site on Mediator is critical for activation by VP16 in mammalian cells. EMBO J. 22, 6494–6504 (2003).
CAS PubMed PubMed Central Google Scholar
- Yang, F., DeBeaumont, R., Zhou, S. & Naar, A. M. The activator-recruited cofactor/Mediator coactivator subunit ARC92 is a functionally important target of the VP16 transcriptional activator. Proc. Natl Acad. Sci. USA 101, 2339–2344 (2004).
CAS PubMed PubMed Central Google Scholar
- Kim, T. W. et al. MED16 and MED23 of Mediator are coactivators of lipopolysaccharide- and heat-shock-induced transcriptional activators. Proc. Natl Acad. Sci. USA 101, 12153–12158 (2004).
CAS PubMed PubMed Central Google Scholar
- Belakavadi, M., Pandey, P. K., Vijayvargia, R. & Fondell, J. D. MED1 phosphorylation promotes its association with mediator: implications for nuclear receptor signaling. Mol. Cell. Biol. 28, 3932–3942 (2008).
CAS PubMed PubMed Central Google Scholar
- Lehner, B., Crombie, C., Tischler, J., Fortunato, A. & Fraser, A. G. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nature Genet. 38, 896–903 (2006).
CAS PubMed Google Scholar
- Carrera, I., Janody, F., Leeds, N., Duveau, F. & Treisman, J. E. Pygopus activates Wingless target gene transcription through the Mediator complex subunits Med12 and Med13. Proc. Natl Acad. Sci. USA 105, 6644–6649 (2008).
CAS PubMed PubMed Central Google Scholar
- Kim, S., Xu, X., Hecht, A. & Boyer, T. G. Mediator is a transducer of Wnt/β-catenin signaling. J. Biol. Chem. 281, 14066–14075 (2006).
CAS PubMed Google Scholar
- Wang, X., Yang, N., Uno, E., Roeder, R. G. & Guo, S. A subunit of the mediator complex regulates vertebrate neuronal development. Proc. Natl Acad. Sci. USA 103, 17284–17289 (2006).
CAS PubMed PubMed Central Google Scholar
- Ding, N. et al. Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation. Mol. Cell 31, 347–359 (2008). This study extended the repressive functions of the kinase module of the Mediator to a role in establishing an epigenetically silenced state in differentiated neurons. It also provided insights into how defects in Mediator function can lead to human disease.
CAS PubMed PubMed Central Google Scholar
- Loncle, N. et al. Distinct roles for Mediator Cdk8 module subunits in Drosophila development. EMBO J. 26, 1045–1054 (2007).
CAS PubMed PubMed Central Google Scholar
- Donner, A. J., Ebmeier, C. C., Taatjes, D. J. & Espinosa, J. M. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nature Struct. Mol. Biol. 17, 194–201 (2010).
CAS Google Scholar
- Belakavadi, M. & Fondell, J. D. Cyclin-dependent kinase 8 positively cooperates with Mediator to promote thyroid hormone receptor-dependent transcriptional activation. Mol. Cell. Biol. 30, 2437–2448 (2010).
CAS PubMed PubMed Central Google Scholar
- Taatjes, D. J., Naar, A. M., Andel, F., Nogales, E. & Tjian, R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295, 1058–1062 (2002).
CAS PubMed Google Scholar
- Benoff, B. et al. Structural basis of transcription activation: the CAP-α CTD–DNA complex. Science 297, 1562–1566 (2002).
CAS PubMed Google Scholar
- Taatjes, D. J., Schneider-Poetsch, T. & Tjian, R. Distinct conformational states of nuclear receptor-bound CRSP–Med complexes. Nature Struct. Mol. Biol. 11, 664–671 (2004).
CAS Google Scholar
- Baek, H. J., Kang, Y. K. & Roeder, R. G. Human Mediator enhances basal transcription by facilitating recruitment of transcription factor IIB during preinitiation complex assembly. J. Biol. Chem. 281, 15172–15181 (2006).
CAS PubMed Google Scholar
- Pavri, R. et al. PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of Mediator. Mol. Cell 18, 83–96 (2005).
CAS PubMed Google Scholar
- Esnault, C. et al. Mediator-dependent recruitment of TFIIH modules in preinitiation complex. Mol. Cell 31, 337–346 (2008).
CAS PubMed Google Scholar
- Kim, Y. J., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).
CAS PubMed Google Scholar
- Akoulitchev, S., Chuikov, S. & Reinberg, D. TFIIH is negatively regulated by cdk8-containing Mediator complexes. Nature 407, 102–106 (2000).
CAS PubMed Google Scholar
- Hengartner, C. J. et al. Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol. Cell 2, 43–53 (1998).
CAS PubMed Google Scholar
- Furumoto, T. et al. A kinase subunit of the human Mediator complex, CDK8, positively regulates transcriptional activation. Genes Cells 12, 119–132 (2007).
CAS PubMed Google Scholar
- Donner, A. J., Szostek, S., Hoover, J. M. & Espinosa, J. M. CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol. Cell 27, 121–133 (2007).
CAS PubMed PubMed Central Google Scholar
- Li, B., Carey, M. & Workman, J. L. The role of chromatin during transcription. Cell 128, 707–719 (2007).
CAS PubMed Google Scholar
- Acevedo, M. L. & Kraus, W. L. Mediator and p300/CBP-steroid receptor coactivator complexes have distinct roles, but function synergistically, during estrogen receptor α-dependent transcription with chromatin templates. Mol. Cell. Biol. 23, 335–348 (2003).
CAS PubMed PubMed Central Google Scholar
- Black, J. C., Choi, J. E., Lombardo, S. R. & Carey, M. A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol. Cell 23, 809–818 (2006). This paper exemplifies biochemical studies that have revealed how Mediator can work with chromatin co-activators.
CAS PubMed Google Scholar
- Fondell, J. D., Guermah, M., Malik, S. & Roeder, R. G. Thyroid hormone receptor-associated proteins and general positive cofactors mediate thyroid hormone receptor function in the absence of the TATA box-binding protein-associated factors of TFIID. Proc. Natl Acad. Sci. USA 96, 1959–1964 (1999).
CAS PubMed PubMed Central Google Scholar
- Sharma, D. & Fondell, J. D. Ordered recruitment of histone acetyltransferases and the TRAP/Mediator complex to thyroid hormone-responsive promoters in vivo. Proc. Natl Acad. Sci. USA 99, 7934–7939 (2002).
CAS PubMed PubMed Central Google Scholar
- Wallberg, A. E., Yamamura, S., Malik, S., Spiegelman, B. M. & Roeder, R. G. Coordination of p300-mediated chromatin remodeling and TRAP/Mediator function through coactivator PGC-1α. Mol. Cell 12, 1137–1149 (2003).
CAS PubMed Google Scholar
- Chen, W., Yang, Q. & Roeder, R. G. Dynamic interactions and cooperative functions of PGC-1α and MED1 in TRα-mediated activation of the brown-fat-specific UCP-1 gene. Mol. Cell 35, 755–768 (2009).
CAS PubMed PubMed Central Google Scholar
- Rodriguez-Navarro, S. Insights into SAGA function during gene expression. EMBO Rep. 10, 843–850 (2009).
CAS PubMed PubMed Central Google Scholar
- Qiu, H. et al. Interdependent recruitment of SAGA and Srb mediator by transcriptional activator Gcn4p. Mol. Cell. Biol. 25, 3461–3474 (2005).
CAS PubMed PubMed Central Google Scholar
- Liu, X., Vorontchikhina, M., Wang, Y. L., Faiola, F. & Martinez, E. STAGA recruits Mediator to the MYC oncoprotein to stimulate transcription and cell proliferation. Mol. Cell. Biol. 28, 108–121 (2008).
PubMed Google Scholar
- Meyer, K. D. et al. Cooperative activity of cdk8 and GCN5L within Mediator directs tandem phosphoacetylation of histone H3. EMBO J. 27, 1447–1457 (2008).
CAS PubMed PubMed Central Google Scholar
- Krebs, A. R. et al. ATAC and Mediator coactivators form a stable complex and regulate a set of non-coding RNA genes. EMBO Rep. 11, 541–547 (2010).
CAS PubMed PubMed Central Google Scholar
- Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).
CAS PubMed Google Scholar
- Ooi, L. & Wood, I. C. Chromatin crosstalk in development and disease: lessons from REST. Nature Rev. Genet. 8, 544–554 (2007).
CAS PubMed Google Scholar
- Kuchin, S. & Carlson, M. Functional relationships of Srb10-Srb11 kinase, carboxy-terminal domain kinase CTDK-I, and transcriptional corepressor Ssn6-Tup1. Mol. Cell. Biol. 18, 1163–1171 (1998).
CAS PubMed PubMed Central Google Scholar
- Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).
CAS PubMed Google Scholar
- Tutter, A. V. et al. Role for Med12 in regulation of Nanog and Nanog target genes. J. Biol. Chem. 284, 3709–3718 (2009).
CAS PubMed Google Scholar
- Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).
CAS PubMed PubMed Central Google Scholar
- Venters, B. J. & Pugh, B. F. A canonical promoter organization of the transcription machinery and its regulators in the Saccharomyces genome. Genome Res. 19, 360–371 (2009).
CAS PubMed PubMed Central Google Scholar
- Saunders, A., Core, L. J. & Lis, J. T. Breaking barriers to transcription elongation. Nature Rev. Mol. Cell Biol. 7, 557–567 (2006).
CAS Google Scholar
- Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130, 77–88 (2007).
CAS PubMed PubMed Central Google Scholar
- Margaritis, T. & Holstege, F. C. Poised RNA polymerase II gives pause for thought. Cell 133, 581–584 (2008).
CAS PubMed Google Scholar
- Malik, S., Barrero, M. J. & Jones, T. Identification of a regulator of transcription elongation as an accessory factor for the human Mediator coactivator. Proc. Natl Acad. Sci. USA 104, 6182–6187 (2007).
CAS PubMed PubMed Central Google Scholar
- Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).
CAS PubMed Google Scholar
- Malagon, F., Tong, A. H., Shafer, B. K. & Strathern, J. N. Genetic interactions of DST1 in Saccharomyces cerevisiae suggest a role of TFIIS in the initiation–elongation transition. Genetics 166, 1215–1227 (2004).
CAS PubMed PubMed Central Google Scholar
- Guglielmi, B., Soutourina, J., Esnault, C. & Werner, M. TFIIS elongation factor and Mediator act in conjunction during transcription initiation in vivo. Proc. Natl Acad. Sci. USA 104, 16062–16067 (2007).
CAS PubMed PubMed Central Google Scholar
- Palangat, M., Renner, D. B., Price, D. H. & Landick, R. A negative elongation factor for human RNA polymerase II inhibits the anti-arrest transcript-cleavage factor TFIIS. Proc. Natl Acad. Sci. USA 102, 15036–15041 (2005).
CAS PubMed PubMed Central Google Scholar
- Krogan, N. J. et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23, 4207–4218 (2003).
CAS PubMed PubMed Central Google Scholar
- Yudkovsky, N., Ranish, J. A. & Hahn, S. A transcription reinitiation intermediate that is stabilized by activator. Nature 408, 225–229 (2000).
CAS PubMed Google Scholar
- Kuras, L., Borggrefe, T. & Kornberg, R. D. Association of the Mediator complex with enhancers of active genes. Proc. Natl Acad. Sci. USA 100, 13887–13891 (2003).
CAS PubMed PubMed Central Google Scholar
- Park, S. W. et al. Thyroid hormone-induced juxtaposition of regulatory elements/factors and chromatin remodeling of Crabp1 dependent on MED1/TRAP220. Mol. Cell 19, 643–653 (2005).
CAS PubMed Google Scholar
- Kagey, M. H. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 18 Aug 2010 (doi:10.1038/nature09380). This recent study extends the role of the Mediator to enhancer–promoter communication, which is emerging as an important aspect of transcriptional control.
CAS PubMed PubMed Central Google Scholar
- Hatzis, P. & Talianidis, I. Dynamics of enhancer–promoter communication during differentiation-induced gene activation. Mol. Cell 10, 1467–1477 (2002).
CAS PubMed Google Scholar
- Szutorisz, H., Dillon, N. & Tora, L. The role of enhancers as centres for general transcription factor recruitment. Trends Biochem. Sci. 30, 593–599 (2005).
CAS PubMed Google Scholar
- Butler, J. E. & Kadonaga, J. T. The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev. 16, 2583–2592 (2002).
CAS PubMed Google Scholar
- Muncke, N. et al. Missense mutations and gene interruption in PROSIT240, a novel _TRAP240_-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation 108, 2843–2850 (2003).
CAS PubMed Google Scholar
- Philibert, R. A. & Madan, A. Role of MED12 in transcription and human behavior. Pharmacogenomics 8, 909–916 (2007).
CAS PubMed Google Scholar
- Firestein, R. et al. CDK8 is a colorectal cancer oncogene that regulates β-catenin activity. Nature 455, 547–551 (2008).
CAS PubMed PubMed Central Google Scholar
- Morris, E. J. et al. E2F1 represses β-catenin transcription and is antagonized by both pRB and CDK8. Nature 455, 552–556 (2008).
CAS PubMed PubMed Central Google Scholar
- Zhu, Y. et al. Amplification and overexpression of peroxisome proliferator-activated receptor binding protein (PBP/PPARBP) gene in breast cancer. Proc. Natl Acad. Sci. USA 96, 10848–10853 (1999).
CAS PubMed PubMed Central Google Scholar
- Nonet, M. L. & Young, R. A. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123, 715–724 (1989).
CAS PubMed PubMed Central Google Scholar
- Gu, W. et al. A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation. Mol. Cell 3, 97–108 (1999).
CAS PubMed Google Scholar
- Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).
CAS PubMed Google Scholar
- Andrau, J. C. et al. Genome-wide location of the coactivator Mediator: binding without activation and transient Cdk8 interaction on DNA. Mol. Cell 22, 179–192 (2006).
CAS PubMed Google Scholar
- Zhu, X. et al. Genome-wide occupancy profile of Mediator and the Srb8–11 module reveals interactions with coding regions. Mol. Cell 22, 169–178 (2006).
CAS PubMed Google Scholar
- Fan, X., Chou, D. M. & Struhl, K. Activator-specific recruitment of Mediator in vivo. Nature Struct. Mol. Biol. 13, 117–120 (2006).
CAS Google Scholar
- Ansari, S. A., He, Q. & Morse, R. H. Mediator complex association with constitutively transcribed genes in yeast. Proc. Natl Acad. Sci. USA 106, 16734–16739 (2009).
CAS PubMed PubMed Central Google Scholar
- Mittler, G., Kremmer, E., Timmers, H. T. & Meisterernst, M. Novel critical role of a human Mediator complex for basal RNA polymerase II transcription. EMBO Rep. 2, 808–813 (2001).
CAS PubMed PubMed Central Google Scholar
- Baek, H. J., Malik, S., Qin, J. & Roeder, R. G. Requirement of TRAP/Mediator for both activator-independent and activator-dependent transcription in conjunction with TFIID-associated TAFIIs. Mol. Cell. Biol. 22, 2842–2852 (2002).
CAS PubMed PubMed Central Google Scholar
- Takagi, Y. & Kornberg, R. D. Mediator as a general transcription factor. J. Biol. Chem. 281, 80–89 (2006).
CAS PubMed Google Scholar
- Hu, X. et al. A Mediator-responsive form of metazoan RNA polymerase II. Proc. Natl Acad. Sci. USA 103, 9506–9511 (2006).
CAS PubMed PubMed Central Google Scholar
- Gazdag, E. et al. TBP2 is essential for germ cell development by regulating transcription and chromatin condensation in the oocyte. Genes Dev. 23, 2210–2223 (2009).
CAS PubMed PubMed Central Google Scholar
- Deato, M. D. et al. MyoD targets TAF3/TRF3 to activate myogenin transcription. Mol. Cell 32, 96–105 (2008).
CAS PubMed PubMed Central Google Scholar
- Baumli, S., Hoeppner, S. & Cramer, P. A conserved Mediator hinge revealed in the structure of the MED7.MED21 (Med7.Srb7) heterodimer. J. Biol. Chem. 280, 18171–18178 (2005).
CAS PubMed Google Scholar
- Lariviere, L. et al. Structure and TBP binding of the Mediator head subcomplex Med8–Med18–Med20. Nature Struct. Mol. Biol. 13, 895–901 (2006).
CAS Google Scholar
- Bourbon, H. M. et al. A unified nomenclature for protein subunits of ediator complexes linking transcriptional regulators to RNA polymerase II. Mol. Cell 14, 553–557 (2004).
CAS PubMed Google Scholar