Heart failure: advances through genomics (original) (raw)
Hunt, S. A. et al. 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation119, e391–e479 (2009). PubMed Google Scholar
Creemers, E. E. & Pinto, Y. M. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc. Res.89, 265–272 (2010). ArticlePubMed Google Scholar
Swynghedauw, B. Molecular mechanisms of myocardial remodeling. Physiol. Rev.79, 215–262 (1999). ArticleCASPubMed Google Scholar
Benjamin, I. J. & Schneider, M. D. Learning from failure: congestive heart failure in the postgenomic age. J. Clin. Invest.115, 495–499 (2005). ArticleCASPubMedPubMed Central Google Scholar
Mudd, J. O. & Kass, D. A. Tackling heart failure in the twenty-first century. Nature451, 919–928 (2008). ArticleCASPubMed Google Scholar
Lee, D. S. et al. Association of parental heart failure with risk of heart failure in offspring. N. Engl. J. Med.355, 138–147 (2006). ArticleCASPubMed Google Scholar
Smith, N. L. et al. Association of genome-wide variation with the risk of incident heart failure in adults of European and African ancestry: a prospective meta-analysis from the cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. Circ. Cardiovasc. Genet.3, 256–266 (2010). ArticleCASPubMedPubMed Central Google Scholar
Morrison, A. C. et al. Genomic variation associated with mortality among adults of European and african ancestry with heart failure: the cohorts for heart and aging research in genomic epidemiology consortium. Circ. Cardiovasc. Genet.3, 248–255 (2010). ArticleCASPubMedPubMed Central Google Scholar
Vasan, R. S. et al. Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. JAMA302, 168–178 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cappola, T. P. et al. Loss-of-function DNA sequence variant in the CLCNKA chloride channel implicates the cardio-renal axis in interindividual heart failure risk variation. Proc. Natl Acad. Sci. USA108, 2456–2461 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hershberger, R. E. et al. Genetic evaluation of cardiomyopathy-a Heart Failure Society of America practice guideline. J. Card. Fail.15, 83–97 (2009). ArticlePubMed Google Scholar
van der Zwaag, P. A. et al. One mutation fits all: phospolamban R14del causes both dilated cardiomypathy and arrhytmogenic right ventricular cardiomyopathy/dysplasia. Circulation122, A17663 (2010). Google Scholar
van Spaendonck-Zwarts, K. Y. et al. Peripartum cardiomyopathy as a part of familial dilated cardiomyopathy. Circulation121, 2169–2175 (2010). ArticlePubMed Google Scholar
Ng, S. B. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nature Genet.42, 790–793 (2010). ArticleCASPubMed Google Scholar
Zhang, C. L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell110, 479–488 (2002). ArticleCASPubMedPubMed Central Google Scholar
Movassagh, M. et al. Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS ONE5, e8564 (2010). ArticlePubMedPubMed Central Google Scholar
Yi, P., Han, Z., Li, X. & Olson, E. N. The mevalonate pathway controls heart formation in Drosophila by isoprenylation of Gγ1. Science313, 1301–1303 (2006). ArticleCASPubMed Google Scholar
Milan, D. J. et al. Drug-sensitized zebrafish screen identifies multiple genes, including GINS3, as regulators of myocardial repolarization. Circulation120, 553–559 (2009). ArticlePubMedPubMed Central Google Scholar
Lowes, B. D. et al. Myocardial gene expression in dilated cardiomyopathy treated with β-blocking agents. N. Engl. J. Med.346, 1357–1365 (2002). ArticleCASPubMed Google Scholar
Knollmann, B. C. & Roden, D. M. A genetic framework for improving arrhythmia therapy. Nature451, 929–936 (2008). ArticleCASPubMed Google Scholar
Nanni, L., Romualdi, C., Maseri, A. & Lanfranchi, G. Differential gene expression profiling in genetic and multifactorial cardiovascular diseases. J. Mol. Cell. Cardiol.41, 934–948 (2006). ArticleCASPubMed Google Scholar
Hwang, J. J. et al. Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. Physiol. Genomics10, 31–44 (2002). ArticleCASPubMed Google Scholar
Schroen, B. et al. Thrombospondin-2 is essential for myocardial matrix integrity: increased expression identifies failure-prone cardiac hypertrophy. Circ. Res.95, 515–522 (2004). ArticleCASPubMed Google Scholar
Schroen, B. et al. Lysosomal integral membrane protein 2 is a novel component of the cardiac intercalated disc and vital for load-induced cardiac myocyte hypertrophy. J. Exp. Med.204, 1227–1235 (2007). ArticleCASPubMedPubMed Central Google Scholar
van Kimmenade, R. R. et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J. Am. Coll. Cardiol.48, 1217–1224 (2006). ArticleCASPubMed Google Scholar
Matkovich, S. J., Zhang, Y., Van Booven, D. J. & Dorn, G. W. Deep mRNA sequencing for in vivo functional analysis of cardiac transcriptional regulators: application to Gαq. Circ. Res.106, 1459–1467 (2010). ArticleCASPubMedPubMed Central Google Scholar
Creemers, E. E., Sutherland, L. B., Oh, J., Barbosa, A. C. & Olson, E. N. Coactivation of MEF2 by the SAP domain proteins myocardin and MASTR. Mol. Cell23, 83–96 (2006). ArticleCASPubMed Google Scholar
Neagoe, C. et al. Titin isoform switch in ischemic human heart disease. Circulation106, 1333–1341 (2002). ArticlePubMed Google Scholar
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotech.28, 511–515 (2010). ArticleCAS Google Scholar
Kleinjan, D. A. & van Heyningen, V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet.76, 8–32 (2005). ArticleCASPubMed Google Scholar
Blow, M. J. et al. ChIP-Seq identification of weakly conserved heart enhancers. Nature Genet.42, 806–810 (2010). ArticleCASPubMed Google Scholar
Haberland, M., Montgomery, R. L. & Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nature Rev. Genet.10, 32–42 (2009). ArticleCASPubMed Google Scholar
Rakyan, V. K. & Beck, S. Epigenetic variation and inheritance in mammals. Curr. Opin. Genet. Dev.16, 573–577 (2006). ArticleCASPubMed Google Scholar
Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature456, 980–984 (2008). ArticleCASPubMed Google Scholar
Small, E. M., Frost, R. J. & Olson, E. N. MicroRNAs add a new dimension to cardiovascular disease. Circulation121, 1022–1032 (2010). ArticlePubMedPubMed Central Google Scholar
van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science316, 575–579 (2007). ArticleCASPubMed Google Scholar
Elmen, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature452, 896–899 (2008). ArticleCASPubMed Google Scholar
Tijsen, A. J. et al. MiR423–425p as a circulating biomarker for heart failure. Circ. Res.106, 1035–1039 (2010). ArticleCASPubMed Google Scholar
Clop, A. et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genet.38, 813–818 (2006). ArticleCASPubMed Google Scholar
Johnson, J. A. & Liggett, S. B. Cardiovascular pharmacogenomics of adrenergic receptor signaling: clinical implications and future directions. Clin. Pharmacol. Ther.89, 366–378 (2011). ArticleCASPubMed Google Scholar
Brugts, J. J. et al. Genetic determinants of treatment benefit of the angiotensin-converting enzyme-inhibitor perindopril in patients with stable coronary artery disease. Eur. Heart J.31, 1854–1864 (2010). ArticleCASPubMed Google Scholar
Sakuntabhai, A. et al. Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease. Nature Genet.21, 271–277 (1999). ArticleCASPubMed Google Scholar
Mayosi, B. M. et al. Heterozygous disruption of SERCA2a is not associated with impairment of cardiac performance in humans: implications for SERCA2a as a therapeutic target in heart failure. Heart92, 105–109 (2006). ArticleCASPubMed Google Scholar
Shull, G. E. et al. Physiological functions of plasma membrane and intracellular Ca2+ pumps revealed by analysis of null mutants. Ann. N. Y. Acad. Sci.986, 453–460 (2003). ArticleCASPubMed Google Scholar