Rare and common variants: twenty arguments (original) (raw)
Lander, E. S. The new genomics: global views of biology. Science274, 536–539 (1996). CASPubMed Google Scholar
Reich, D. E. & Lander, E. S. On the allelic spectrum of human disease. Trends Genet.17, 502–510 (2001). CASPubMed Google Scholar
Pritchard, J. K. & Cox, N. J. The allelic architecture of human disease genes: common disease–common variant... or not? Hum. Mol. Genet.11, 2417–2423 (2002). CASPubMed Google Scholar
Botstein, D. & Risch, N. Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nature Genet.33, 228–237 (2003). CASPubMed Google Scholar
Maher, B. Personal genomes: the case of the missing heritability. Nature456, 18–21 (2008). CASPubMed Google Scholar
Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature461, 747–753 (2009). This paper provides a compendium of arguments, which were assembled by participants in a US National Institutes of Health (NIH) workshop, relating to the possible sources of missing heritability. ArticleCASPubMedPubMed Central Google Scholar
Fisher, R. A. The Genetical Theory of Natural Selection (Oxford Univ. Press, Oxford, 1930). Google Scholar
Visscher, P. M., Hill, W. G. & Wray, N. Heritability in the genomics era — errors and misconceptions. Nature Rev. Genet.9, 255–266 (2008). This is an accessible modern introduction to the concept of heritability. CASPubMed Google Scholar
Cirulli, E. T. & Goldstein, D. B. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nature Rev. Genet.11, 415–425 (2010). CASPubMed Google Scholar
Eichler, E. E. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nature Rev. Genet.11, 446–450 (2010). CASPubMed Google Scholar
Park, J. H. et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nature Genet.42, 570–575 (2010). This paper discusses how the true number of associations and their effect sizes can be inferred from observed GWAS results. CASPubMed Google Scholar
Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nature Genet.42, 937–948 (2010). The largest GWAS meta-analysis to date shows that hundreds of complex variants influence continuous traits. CASPubMed Google Scholar
Lango-Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature467, 832–838 (2010). CASPubMedPubMed Central Google Scholar
Gibson, G. Hints of hidden heritability in GWAS. Nature Genet.42, 558–560 (2010). CASPubMed Google Scholar
Steinberg, M. H. & Adewoye, A. H. Modifier genes and sickle cell anemia. Curr. Opin. Hematol.13, 131–136 (2006). CASPubMed Google Scholar
Bodmer, W. & Bonilla, C. Common and rare variants in multifactorial susceptibility to common diseases. Nature Genet.40, 695–701 (2008). CASPubMed Google Scholar
McClellan, J. M., Susser, E. & King, M.-C. Schizophrenia: a common disease caused by multiple rare alleles. Br. J. Psychiatry190, 194–199 (2007). PubMed Google Scholar
Wray, N. R., Purcell, S. M. & Visscher, P. M. Synthetic associations created by rare variants do not explain most GWAS results. PLoS Biol.9, e1000579 (2011). CASPubMedPubMed Central Google Scholar
Mackay, T. F. C. The genetic architecture of quantitative traits. Annu. Rev. Genet.35, 303–339 (2001). CASPubMed Google Scholar
Mackay, T. F. C. & Stone, E. A. The genetics of quantitative traits: challenges and prospects. Nature Rev. Genet.10, 565–577 (2009). CASPubMed Google Scholar
Feinberg, A. P. Phenotypic plasticity and the epigenetics of human disease. Nature447, 433–440 (2007). CASPubMed Google Scholar
Kong, A. et al. Parental origin of sequence variants associated with complex diseases. Nature462, 868–874 (2009). CASPubMedPubMed Central Google Scholar
Small, K. S. et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nature Genet.43, 561–564 (2011). CASPubMed Google Scholar
Jablonka, E. & Raz, E. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Quart. Rev. Biol.84, 131–176 (2009). PubMed Google Scholar
Bulmer, M. G. The effect of selection on genetic variability. Am. Nat.105, 201–211 (1971). Google Scholar
Barton, N. H. & Turelli, M. Evolutionary quantitative genetics: how little do we know? Annu. Rev. Genet.23, 337–370 (1989). CASPubMed Google Scholar
Bulmer, M. G. Maintenance of genetic variability by mutation-selection balance: a child's guide through the jungle. Genome31, 761–767 (1989). Google Scholar
Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl Acad. Sci. USA107, 961–968 (2010). CASPubMedPubMed Central Google Scholar
Hartl, D. L. & Clark, A. G. Principles of Population Genetics 3rd edn (Sinauer Associates, Sunderland, USA, 1998). Google Scholar
Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet.22, 231–238 (1999). CASPubMed Google Scholar
Kryukov, G. V., Pennacchio, L. A. & Sunyaev, S. R. Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am. J. Hum. Genet.80, 727–739 (2007). CASPubMedPubMed Central Google Scholar
Zhu, Q. et al. A genome-wide comparison of the functional properties of rare and common genetic variants in humans. Am. J. Hum. Genet.88, 458–468 (2011). CASPubMedPubMed Central Google Scholar
Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature478, 476–482 (2011). CASPubMedPubMed Central Google Scholar
Wray, G. A. The evolutionary significance of _cis_-regulatory mutations. Nature Rev. Genet.8, 206–216 (2007). CASPubMed Google Scholar
Montgomery, S. B., Lappalainen, T., Gutierrez-Arcelus, M. & Dermitzakis, E. T. Rare and common regulatory variation in population-scale sequenced human genomes. PLoS Genet.7, e1002144 (2011). CASPubMedPubMed Central Google Scholar
Chorley, B. N. et al. Discovery and verification of functional single nucleotide polymorphisms in regulatory genomic regions: current and developing technologies. Mutat. Res.659, 147–157 (2008). CASPubMedPubMed Central Google Scholar
Goldstein, J. L. & Brown, M. S. The LDL receptor locus and the genetics of familial hypercholesterolemia. Annu. Rev. Genet.13, 259–289 (1979). CASPubMed Google Scholar
Weedon, M. N. & Frayling, T. M. Insights on pathogenesis of type 2 diabetes from MODY genetics. Curr. Diab. Rep.7, 131–138 (2007). CASPubMed Google Scholar
Easton, D. F. et al. A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes. Am. J. Hum. Genet.81, 873–883 (2007). CASPubMedPubMed Central Google Scholar
Hamosh, A. et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucl. Acids Res.30, 52–55 (2002). CASPubMedPubMed Central Google Scholar
Tarpey, P. S. et al. A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nature Genet.41, 535–543 (2009). This was one of the first whole-exome sequencing studies that was designed to detect rare variants of large effect. CASPubMed Google Scholar
George, J. et al. Two human MYD88 variants, S34Y and R98C, interfere with MyD88–IRAK4–Myddosome assembly. J. Biol. Chem.286, 1341–1353 (2011). CASPubMed Google Scholar
McCarroll, S. A. & Altshuler, D. A. Copy-number variation and association studies of human disease. Nature Genet.39, S37–S42 (2007). CASPubMed Google Scholar
Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science316, 445–449 (2007). This paper provided the first demonstration that rare copy number variants associate with psychiatric disease. CASPubMedPubMed Central Google Scholar
Cook, E. H. Jr & Scherer, S. W. Copy-number variations associated with neuropsychiatric conditions. Nature455, 919–923 (2008). CASPubMed Google Scholar
Davis, E. E. et al. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nature Genet.43, 189–196 (2011). CASPubMed Google Scholar
Dickson, S. P., Wang, K., Krantz, I., Hakonarson, H. & Goldstein, D. B. Rare variants create synthetic genome-wide associations. PLoS Biol.8, e1000294 (2010). This study presents the argument that common variant associations may be due to LD with rare variants. PubMedPubMed Central Google Scholar
Anderson, C. A., Soranzo, N. Barrett, J. C. & Zeggini, E. Synthetic associations are unlikely to account for many common disease genome-wide association signals. PLoS Biol.9, e1000580 (2011). CASPubMedPubMed Central Google Scholar
Goldstein, D. B. The importance of synthetic associations will only be resolved empirically. PLoS Biol.9, e1001008 (2011). CASPubMedPubMed Central Google Scholar
Park, J.-H. et al. Distribution of allele frequencies and effect sizes and their inter-relationships for common genetic susceptibility variants. Proc. Natl Acad. Sci. USA108, 18026–18031 (2011). CASPubMedPubMed Central Google Scholar
Ruderfer, D. M. et al. A family-based study of common polygenic variation and risk of schizophrenia. Mol. Psychiatry16, 887–888 (2011). CASPubMedPubMed Central Google Scholar
Risch, N. Linkage strategies for genetically complex traits: I. Multilocus models. Am. J. Hum. Genet.46, 222–228 (1990). CASPubMedPubMed Central Google Scholar
Slatkin, M. Genotype-specific risks as indicators of the genetic architecture of complex diseases. Am. J. Hum. Genet.83, 120–126 (2008). CASPubMedPubMed Central Google Scholar
Hemminki, K. & Bermejo, J. L. The 'common disease–common variant' hypothesis and familial risks. PLoS ONE3, e2504 (2011). Google Scholar
Moore, J. H. & Williams, S. M. Epistasis and its implications for personal genetics. Am. J. Hum. Genet.85, 309–320 (2009). CASPubMedPubMed Central Google Scholar
Amutha, A. et al. Clinical profile of diabetes in the young seen between 1992 and 2009 at a specialist diabetes centre in south India. Prim. Care Diabetes5, 223–229 (2011). PubMed Google Scholar
Chan, J. C. et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA301, 2129–2140 (2009). CASPubMed Google Scholar
Saha, S., Chant, D., Welham, J. & McGrath, J. A systematic review of the prevalence of schizophrenia. PLoS Med.2, e141 (2005). PubMedPubMed Central Google Scholar
Malaspina, D. et al. Advancing paternal age and the risk of schizophrenia. Arch. Gen. Psychiatry58, 361–367 (2001). CASPubMed Google Scholar
Lopez-Castroman, J. et al. Differences in maternal and paternal age between schizophrenia and other psychiatric disorders. Schizophr. Res.116, 184–190 (2010). PubMed Google Scholar
Waters, K. M. et al. Consistent association of type 2 diabetes risk variants found in Europeans in diverse racial and ethnic groups. PLoS Genet.6, e1001078 (2010). PubMedPubMed Central Google Scholar
Shriner, D. et al. Transferability and fine-mapping of genome-wide associated loci for adult height across human populations. PLoS ONE4, e8398 (2009). PubMedPubMed Central Google Scholar
Sim, X. et al. Transferability of type 2 diabetes implicated loci in multi-ethnic cohorts from Southeast Asia. PLoS Genet.7, e1001363 (2011). CASPubMedPubMed Central Google Scholar
Waters, K. M. et al. Generalizability of associations from prostate cancer genome-wide association studies in multiple populations. Cancer Epidemiol. Biomarkers Rev.18, 1285–1289 (2009). CAS Google Scholar
Gibson, G. Decanalization and the origins of complex disease. Nature Rev. Genet.10, 134–140 (2009). CASPubMed Google Scholar
Schork, N. J. Genome partitioning and whole genome analysis. Adv. Genet.42, 299–322 (2001). CASPubMed Google Scholar
Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nature Genet.42, 565–569 (2010). This paper introduces a multivariate approach for capturing the effects of common variant associations genome-wide. CASPubMed Google Scholar
Goddard, M. E. & Hayes, B. J. Genomic selection. J. Animal Breed. Genet.124, 323–330 (2007). CAS Google Scholar
Purcell, S. M. et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature460, 748–752 (2009). CASPubMed Google Scholar
So, H.-C., Li, M. & Sham, P. C. Uncovering the total heritability explained by all true susceptibility variants in a genome-wide association study. Genet. Epidemiol.35, 447–456 (2011). PubMed Google Scholar
Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nature Genet.43, 519–525 (2011). CASPubMed Google Scholar
Davies, G. et al. Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Mol. Psychiatry16, 996–1005 (2011). CASPubMedPubMed Central Google Scholar
Falconer, D. S. Introduction to Quantitative Genetics Ch. 18 (Longman, New York, 1981). Google Scholar
Cannon, T. D. & Keller, M. C. Endophenotypes in the genetic analysis of mental disorders. Annu. Rev. Clin. Psychol.2, 267–290 (2006). PubMed Google Scholar
Kilpeläinen, T. O. et al. Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile. Nature Genet.43, 753–760 (2011). PubMed Google Scholar
Bis, J. C. et al. Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque. Nature Genet.43, 940–947 (2011). CASPubMed Google Scholar
Speliotes, E. K. et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet.7, e1001324 (2011). CASPubMedPubMed Central Google Scholar
Musunuru, K. et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature466, 714–719 (2010). This was an important case study showing how to go from association study to molecular function of a specific variant. CASPubMedPubMed Central Google Scholar
Wang, Y. et al. Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc. Natl Acad. Sci. USA106, 226–231 (2009). CASPubMed Google Scholar
Bertram, L., Lill, C. M. & Tanzi, R. E. The genetics of Alzheimer disease: back to the future. Neuron68, 270–281 (2010). CASPubMed Google Scholar
Cookson, W. et al. Mapping complex disease traits with global gene expression. Nature Rev. Genet.10, 184–194 (2009). CASPubMed Google Scholar
Majewski, J. & Pastinen, T. The study of eQTL variations by RNA-seq: from SNPs to phenotypes. Trends Genet.27, 72–79 (2011). CASPubMed Google Scholar
Lalonde, E. et al. RNA sequencing reveals the role of splicing polymorphisms in regulating human gene expression. Genome Res.21, 545–554 (2011). CASPubMedPubMed Central Google Scholar
Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature403, 503–511 (2000). CASPubMed Google Scholar
Slavov, N. & Dawson, K. A. Correlation signature of the macroscopic states of the gene regulatory network in cancer. Proc. Natl Acad. Sci. USA106, 4079–4084 (2009). CASPubMedPubMed Central Google Scholar
Voineagu, I. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature474, 380–384 (2011). CASPubMedPubMed Central Google Scholar
Chaussabel, D. et al. A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus. Immunity29, 150–164 (2008). CASPubMedPubMed Central Google Scholar
Gibson, G. & Dworkin, I. M. Uncovering cryptic genetic variation. Nature Rev. Genet.5, 681–690 (2004). CASPubMed Google Scholar
Aylor, D. L. et al. Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Res.21, 1213–12122 (2011). CASPubMedPubMed Central Google Scholar
Philip, V. M. et al. Genetic analysis in the Collaborative Cross breeding population. Genome Res.21, 1223–1238 (2011). CASPubMedPubMed Central Google Scholar
Macdonald, S. J. & Long, A. D. Joint estimates of quantitative trait locus effect and frequency using synthetic recombinant populations of Drosophila melanogaster. Genetics176, 1261–1281 (2007). CASPubMedPubMed Central Google Scholar
Burke, M. K. et al. Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature467, 587–590 (2010). This paper uses an 'evolve-and-resequence' strategy to demonstrate the pervasive polygenic basis of complex traits. CASPubMed Google Scholar
Turner, T. L. et al. Population-based resequencing of experimentally evolved populations reveals the genetic basis of body size variation in Drosophila melanogaster. PLoS Genet.7, e1001336 (2011). CASPubMedPubMed Central Google Scholar
Manolio, T. A., Brooks, L. D. & Collins, F. S. A HapMap harvest of insights into the genetics of common disease. J. Clin. Invest.118, 1590–1605 (2008). CASPubMedPubMed Central Google Scholar
Weedon, M. N. et al. Genome-wide association analysis identifies 20 loci that influence adult height. Nature Genet.40, 575–583 (2008). CASPubMed Google Scholar
Zhong, R. & Prentice, R. L. Correcting “winner's curse” in odds ratios from genome-wide association findings for major complex human diseases. Genet. Epidemiol.34, 78–91 (2010). PubMedPubMed Central Google Scholar
Pasyukova, E. G., Vieira, C. & Mackay, T. F. C. Deficiency mapping of quantitative trait loci affecting longevity in Drosophila melanogaster. Genetics156, 1129–1146 (2000). CASPubMedPubMed Central Google Scholar
Fowler, J. H, Settle, J. E. & Christakis, N. A. Correlated genotypes in friendship networks. Proc. Natl Acad. Sci. USA108, 1993–1997 (2011). CASPubMedPubMed Central Google Scholar
Jelenkovic, A., Poveda, A,, Susanne, C. & Rebato, E. Contribution of genetics and environment to craniofacial anthropometric phenotypes in Belgian nuclear families. Hum. Biol.80, 637–654 (2008). PubMed Google Scholar
Rzhetsky, A., Wajngurt, D., Park, N. & Zheng, T. Probing genetic overlap among complex human phenotypes. Proc. Natl Acad. Sci. USA104, 11694–11699 (2007). CASPubMedPubMed Central Google Scholar
Ashley, E. A. et al. Clinical assessment incorporating a personal genome. Lancet375, 1525–1535 (2010). This study develops a strategy that integrates whole-genome sequence and environmental exposure information to assess personal risk of disease. CASPubMedPubMed Central Google Scholar
Hamza, T. H. et al. Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson's disease modifier gene via interaction with coffee. PLoS Genet.7, e1002237 (2011). CASPubMedPubMed Central Google Scholar
Bauer, R. C., Stylianou, I. M., Rader, D. J. Functional validation of new pathways in lipoprotein metabolism identified by human genetics. Curr. Opin. Lipidol.22, 123–128 (2011). CASPubMed Google Scholar
Fellay, J. et al. ITPA gene variants protect against anemia in patients treated for chronic hepatitis C. Nature464, 405–408 (2010). CASPubMed Google Scholar
Schork, N., Murray, S. S., Frazer, K. & Topol, E. J. Common vs. rare allele hypotheses for complex disease. Curr. Opin. Genet. Dev.19, 212–219 (2009). CASPubMedPubMed Central Google Scholar
Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J. A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science324, 387–389 (2009). CASPubMedPubMed Central Google Scholar
Momozawa, Y. et al. Resequencing of positional candidates identifies low frequency IL23R coding variants protecting against inflammatory bowel disease. Nature Genet.43, 43–47 (2011). CASPubMed Google Scholar
Rivas, M. A. et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nature Genet.43, 1066–1073 (2011). CASPubMed Google Scholar
Johansen, C. T. et al. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nature Genet.42, 684–687 (2010). CASPubMed Google Scholar
Ng, S. B. et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature461, 272–276 (2009). CASPubMedPubMed Central Google Scholar
Lupski, J. R., Belmont, J. W., Boerwinkle, E. & Gibbs, R. A. Clan genomics and the complex architecture of human disease. Cell147, 32–43 (2011). CASPubMedPubMed Central Google Scholar
Bansal, V., Libiger, O., Torkamani, A. & Schork, N. J. Statistical analysis strategies for association studies involving rare variants. Nature Rev. Genet.11, 773–785 (2010). CASPubMed Google Scholar
Rendel, J. M. Canalization and Gene Control (Academic Press, New York, 1967). Google Scholar
Bhattacharjee, S. et al. Using principal components of genetic variation for robust and powerful detection of gene-gene interactions in case–control and case-only studies. Am. J. Hum. Genet.86, 331–342 (2010). CASPubMedPubMed Central Google Scholar
Lucchesi, J. C. Synthetic lethality and semi-lethality among functionally related mutants of Drosophila melanogaster. Genetics59, 37–44 (1968). CASPubMedPubMed Central Google Scholar
Lehner, B. et al. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling program. Nature Genet.38, 896–903 (2006). CASPubMed Google Scholar
Duggal, P., Gillanders, P. M., Holmes, T. N. & Bailey-Wilson, J. E. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome-wide association studies. BMC Genomics9, 516 (2008). PubMedPubMed Central Google Scholar
Li, Y., Willer, C., Sanna, S. & Abecasis, G. Genotype imputation. Annu. Rev. Genom. Hum. Genet.10, 387–406 (2009). CAS Google Scholar
Shea, J. et al. Comparing strategies to fine-map the association of common SNPs at chromosome 9p21 with type 2 diabetes and myocardial infarction. Nature Genet.43, 801–805 (2011). CASPubMed Google Scholar
Kacser, H. & Burns, J. A. The control of flux. Symp. Soc. Exp. Biol.27, 65–104 (1973). This paper presents a theoretical argument for the recessivity of naturally occurring mutations that affect metabolism. CASPubMed Google Scholar