The origin and evolution of model organisms (original) (raw)

References

  1. Brenner, S. et al. Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 366, 265–268 (1993).
  2. Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).Reviews how comparative biology methods that use phylogenies and molecular clocks can lead to remarkable insights into the evolution of life.
    CAS PubMed Google Scholar
  3. Enard, W. et al. Intra- and interspecific variation in primate gene expression patterns. Science 296, 340–343 (2002).
    CAS PubMed Google Scholar
  4. Ingman, M., Kaessmann, H., Pääbo, S. & Gyllensten, U. Mitochondrial genome variation and the origin of modern humans. Nature 408, 708–713 (2000).
    Article CAS PubMed Google Scholar
  5. Hedges, S. B. & Kumar, S. Vertebrate genomes compared. Science 297, 1283–1285 (2002).
    CAS PubMed Google Scholar
  6. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).
    CAS PubMed PubMed Central Google Scholar
  7. Knoll, A. H. The early evolution of eukaryotes: a geological perspective. Science 256, 622–627 (1992).
    CAS PubMed Google Scholar
  8. Schopf, J. W. Microfossils of the early Archean Apex chert: new evidence of the antiquity of life. Science 260, 640–646 (1993).
    CAS PubMed Google Scholar
  9. Doolittle, W. F. Phylogenetic classification and the universal tree. Science 284, 2124–2128 (1999).Describes how the finding of large amounts of horizontal gene transfer, as inferred from phylogenetic analyses of sequence data, has reshaped our view of the 'tree of life'.
    CAS PubMed Google Scholar
  10. Philippe, H. & Forterre, P. The rooting of the universal tree of life is not reliable. J. Mol. Evol. 49, 509–523 (1999).
    CAS PubMed Google Scholar
  11. Margulis, L. Archael–eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. Proc. Natl Acad. Sci. USA 93, 1071–1076 (1996).
    CAS PubMed PubMed Central Google Scholar
  12. Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).
    CAS PubMed Google Scholar
  13. Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).
    CAS PubMed PubMed Central Google Scholar
  14. Hansmann, S. & Martin, W. Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis. Int. J. Syst. Evol. Microbiol. 50, 1655–1663 (2000).
    CAS PubMed Google Scholar
  15. Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E. & Stanhope, M. J. Universal trees based on large combined protein data sets. Nature Genet. 28, 281–285 (2001).
    CAS PubMed Google Scholar
  16. Hedges, S. B. et al. A genomic timescale for the origin of eukaryotes. BMC Evol. Biol. 1, 4 (2001).
    CAS PubMed PubMed Central Google Scholar
  17. Wolf, Y. I., Rogozin, I. B., Grishin, N. V., Tatusov, R. L. & Koonin, E. V. Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol. Biol. 1, 8 (2001).
    CAS PubMed PubMed Central Google Scholar
  18. Brochier, C., Babteste, E., Moreira, D. & Philippe, H. Eubacterial phylogeny based on translational apparatus proteins. Trends Genet. 18, 1–5 (2002).
    CAS PubMed Google Scholar
  19. Matte-Tailliez, O., Brochier, C., Forterre, P. & Philippe, H. Archael phylogeny based on ribosomal proteins. Mol. Biol. Evol. 19, 631–639 (2002).
    CAS PubMed Google Scholar
  20. Snel, B., Bork, P. & Huynen, M. A. Genome phylogeny based on gene content. Nature Genet. 21, 108–110 (1999).
    CAS PubMed Google Scholar
  21. House, C. H. & Fitz-Gibbon, S. T. Using homolog groups to create a whole-genomic tree of free-living organisms: an update. J. Mol. Evol. 54, 539–547 (2002).
    CAS PubMed Google Scholar
  22. Tekaia, F., Lazcano, A. & Dujon, B. The genomic tree as revealed from whole proteome comparisons. Genome Res. 9, 550–557 (1999).
    CAS PubMed PubMed Central Google Scholar
  23. Daubin, V., Gouy, M. & Perriere, G. A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res. 12, 1080–1090 (2002).
    CAS PubMed PubMed Central Google Scholar
  24. Ragan, M. A. Detection of lateral gene transfer among microbial genomes. Curr. Opin. Genet. Dev. 11, 620–626 (2001).
    CAS PubMed Google Scholar
  25. Rivera, M. C. & Lake, J. A. Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257, 74–76 (1992).
    CAS PubMed Google Scholar
  26. Cammarano, P., Creti, R., Sanangelantoni, A. M. & Palm, P. The Archaea monophyly issue: a phylogeny of translational elongation factor G(2) sequences inferred from an optimized selection of alignment positions. J. Mol. Evol. 49, 524–537 (1999).
    CAS PubMed Google Scholar
  27. Faguy, D. M. & Doolittle, W. F. Genomics: lessons from the Aeropyrum pernix genome. Curr. Biol. 9, R883–R886 (1999).
    CAS PubMed Google Scholar
  28. Tourasse, N. J. & Gouy, M. Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes. Mol. Phylogenet. Evol. 13, 159–168 (1999).
    CAS PubMed Google Scholar
  29. Katoh, K., Kuma, K. I. & Miyata, T. Genetic algorithm-based maximum-likelihood analysis for molecular phylogeny. J. Mol. Evol. 53, 477–484 (2001).
    CAS PubMed Google Scholar
  30. Nisbet, E. G. & Sleep, N. H. The habitat and nature of early life. Nature 409, 1083–1091 (2001).
    CAS PubMed Google Scholar
  31. Galtier, N., Tourasse, N. & Gouy, M. A nonhyperthermophilic common ancestor to extant life forms. Science 283, 220–221 (1999).
    CAS PubMed Google Scholar
  32. Brochier, C. & Philippe, H. A non-hyperthermophilic ancestor for Bacteria. Nature 417, 244 (2002).
    CAS PubMed Google Scholar
  33. Daubin, V., Gouy, M. & Perrière, G. Bacterial phylogeny using supertree approach. Genome Informatics 12, 155–164 (2001).
    CAS PubMed Google Scholar
  34. Mojzsis, S. J. et al. Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59 (1996).
    CAS PubMed Google Scholar
  35. Fedo, C. M. & Whitehouse, M. J. Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth's earliest life. Science 296, 1448–1452 (2002).
    CAS PubMed Google Scholar
  36. Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J. & Czaja, A. D. Laser-Raman imagery of Earth's earliest fossils. Nature 416, 73–76 (2002).
    CAS PubMed Google Scholar
  37. Brasier, M. D. et al. Questioning the evidence for Earth's earliest fossils. Nature 416, 76–81 (2002).Questions whether the 3.5-Gyr-old microfossils that were found in the Apex Chert rocks, in Australia (reference 8 ) are life forms. Reference 36 is a rebuttal to this paper and provides additional scrutiny of the same microfossils. These authors concur with one conclusion of reference 37 , that the fossils are not of Cyanobacteria, but maintain that they are, nonetheless, fossils of microbes.
    PubMed Google Scholar
  38. Kollman, J. M. & Doolittle, R. F. Determining the relative rates of change for prokaryotic and eukaryotic proteins with anciently duplicated paralogs. J. Mol. Evol. 51, 173–181 (2000).
    CAS PubMed Google Scholar
  39. Feng, D.-F., Cho, G. & Doolittle, R. F. Determining divergence times with a protein clock: update and reevaluation. Proc. Natl Acad. Sci. USA 94, 13028–13033 (1997).An update of the influential 1996 Science paper from the laboratory of Russell Doolittle, one of the first to use large numbers of genes or proteins to date early events in the history of life.
    CAS PubMed PubMed Central Google Scholar
  40. Summons, R. E., Jahnke, L. L., Hope, J. M. & Logan, G. A. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557 (1999).
    CAS PubMed Google Scholar
  41. Corliss, J. O. in Nature and Human Society: the Quest for a Sustainable World (ed. Raven, P. H.) 130–155 (The National Academy of Sciences, Washington DC, 2000).
    Google Scholar
  42. Margulis, L. Origin of Eukaryotic Cells (Yale University Press, New Haven, Connecticut, 1970).
    Google Scholar
  43. Gupta, R. S. Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among Archaebacteria, Eubacteria, and eukaryotes. Microbiol. Mol. Biol. Rev. 62, 1435–1491 (1998).Provides a detailed and often overlooked critique of the evidence bearing on the origin of mitochondria and on the number of symbiotic events (and gene transfers) that occurred in the origin of eukaryotes.
    CAS PubMed PubMed Central Google Scholar
  44. Sogin, M. L., Gunderson, J. H., Elwood, H. J., Alonso, R. A. & Peattie, D. A. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. Science 243, 75–77 (1989).
    CAS PubMed Google Scholar
  45. Roger, A. Reconstructing early events in eukaryotic evolution. Am. Nat. 154, S146–S163 (1999).
    CAS PubMed Google Scholar
  46. Horner, D. S. & Embley, T. M. Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. Mol. Biol. Evol. 18, 1970–1975 (2001).
    CAS PubMed Google Scholar
  47. Silberman, J. D. et al. Retortamonad flagellates are closely related to diplomonads: implications for the history of mitochondrial function in eukaryote evolution. Mol. Biol. Evol. 19, 777–786 (2002).
    CAS PubMed Google Scholar
  48. Williams, B. A., Hirt, R. P., Lucocq, J. M. & Embley, T. M. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418, 865–869 (2002).
    CAS PubMed Google Scholar
  49. Katinka, M. D. et al. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414, 450–453 (2001).
    CAS PubMed Google Scholar
  50. Keeling, P. J., Luker, M. A. & Palmer, J. D. Evidence from β-tubulin phylogeny that microsporidia evolved from within the fungi. Mol. Biol. Evol. 17, 23–31 (2000).
    CAS PubMed Google Scholar
  51. Wang, D. Y.-C., Kumar, S. & Hedges, S. B. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc. R. Soc. Lond. B Biol. Sci. 266, 163–171 (1999).
    CAS Google Scholar
  52. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977 (2000).
    CAS PubMed Google Scholar
  53. Stechmann, A. & Cavalier-Smith, T. Rooting the eukaryote tree by using gene fusion. Science 297, 89–91 (2002).
    CAS PubMed Google Scholar
  54. Moreira, D., LeGuyader, H. & Philippe, H. The origin of red algae and the evolution of chloroplasts. Nature 405, 69–72 (2000).Provides strong evidence from several proteins that red algae and glaucocystophytes (glaucophytes) belong to the plant lineage, supporting a single origin of plastids.
    CAS PubMed Google Scholar
  55. Bapteste, E. et al. The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba and Mastigamoeba. Proc. Natl Acad. Sci. USA 99, 1414–1419 (2002).
    CAS PubMed PubMed Central Google Scholar
  56. King, N. & Carroll, S. B. A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc. Natl Acad. Sci. USA 98, 15032–15037 (2001).
    CAS PubMed PubMed Central Google Scholar
  57. Stillier, J. W., Riley, J. & Hall, B. D. Are red algae plants? A critical evaluation of three key molecular data sets. J. Mol. Evol. 52, 527–539 (2001).
    Google Scholar
  58. Nickrent, D. L., Parkinson, C. L., Palmer, J. D. & Duff, R. J. Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Mol. Biol. Evol. 17, 1885–1895 (2000).
    CAS PubMed Google Scholar
  59. Chaw, S. M., Parkinson, C. L., Cheng, Y., Vincent, T. M. & Palmer, J. D. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc. Natl Acad. Sci. USA 97, 4086–4091 (2000).
    CAS PubMed PubMed Central Google Scholar
  60. Qiu, Y.-L., Cho, Y., Cox, J. C. & Palmer, J. D. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394, 671–674 (1998).
    CAS PubMed Google Scholar
  61. Kumar, S. & Hedges, S. B. A molecular timescale for vertebrate evolution. Nature 392, 917–920 (1998).
    CAS PubMed Google Scholar
  62. Takezaki, N., Rzhetsky, A. & Nei, M. Phylogenetic test of the molecular clock and linearized trees. Mol. Biol. Evol. 12, 823–833 (1995).
    CAS PubMed Google Scholar
  63. Sanderson, M. J. A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol. Biol. Evol. 14, 1218–1231 (1997).
    CAS Google Scholar
  64. Thorne, J. L., Kishino, H. & Painter, I. S. Estimating the rate of evolution of the rate of molecular evolution. Mol. Biol. Evol. 15, 1647–1657 (1998).
    CAS PubMed Google Scholar
  65. Kishino, H., Thorne, J. L. & Bruno, W. J . Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol. Biol. Evol. 18, 352–361 (2001).
    CAS PubMed Google Scholar
  66. Sanderson, M. J. & Doyle, J. A. Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data. Am. J. Bot. 88, 1499–1516 (2001).
    CAS PubMed Google Scholar
  67. Heckman, D. S. et al. Molecular evidence for the early colonization of land by fungi and plants. Science 293, 1129–1133 (2001).
    CAS PubMed Google Scholar
  68. Magallon, S. & Sanderson, M. J. Absolute diversification rates in angiosperm clades. Evolution 55, 1762–1780 (2001).
    CAS PubMed Google Scholar
  69. Martin, W., Gierl, A. & Saedler, H. Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339, 46–48 (1989).
    CAS Google Scholar
  70. Crane, P. R., Friis, E. M. & Pedersen, K. R. The origin and early diversification of angiosperms. Nature 374, 27–33 (1995).
    CAS Google Scholar
  71. Smith, A. B. Systematics and the Fossil Record (Blackwell Scientific, London, 1994).
    Google Scholar
  72. Kenrick, P. & Crane, P. R. The origin and early evolution of plants on land. Nature 389, 33–39 (1997).
    CAS Google Scholar
  73. Kirk, P. M., Cannon, P. F., David, J. C. & Stalpers, J. A. Dictionary of Fungi (CAB International, Surrey, UK, 2001).
    Google Scholar
  74. Redecker, D., Kodner, R. & Graham, L. E. Glomalean fungi from the Ordovician. Science 289, 1920–1921 (2000).
    CAS PubMed Google Scholar
  75. Berbee, M. L. & Taylor, J. W. in The Mycota. VIIB. Systematics and Evolution (eds McLaughlin, D. J. & McLaughlin, E.) 229–246 (Springer, New York, 2001).
    Google Scholar
  76. Goffeau, A. et al. Life with 6000 genes. Science 274, 546–567 (1996).
    CAS PubMed Google Scholar
  77. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe. Nature 415, 871–880 (2002).
    CAS PubMed Google Scholar
  78. Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000).Describes the oldest taxonomically resolved eukaryotic group (red algae): it arose 1.2 Gyr ago, and therefore has helped to constrain molecular clocks. The article also discusses the significance of this ancient group for understanding the origin of sex and multicellularity.
    Google Scholar
  79. Forsburg, S. L. The art and design of genetic screens: yeast. Nature Rev. Genet. 2, 659–668 (2001).
    CAS PubMed Google Scholar
  80. Schulte, U., Becker, I., Mewes, H. W. & Mannhaupt, G. Large scale analysis of sequences from Neurospora crassa. J. Biotechnol. 94, 3–13 (2002).
    CAS PubMed Google Scholar
  81. Berbee, M. L. The phylogeny of plant and animal pathogens in the Ascomycota. Physiol. Mol. Plant Pathol. 59, 165–187 (2001).
    CAS Google Scholar
  82. May, R. M. in Nature and Human Society: the Quest for a Sustainable World (ed. Raven, P. H.) 30–45 (The National Academy of Sciences, Washington DC, 2000).
    Google Scholar
  83. Li, W.-H., Gouy, M., Sharp, P. M., Ohuigin, C. & Yang, Y.-W. Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. Proc. Natl Acad. Sci. USA 87, 6703–6707 (1990).
    CAS PubMed PubMed Central Google Scholar
  84. Murphy, W. J. et al. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294, 2348–2351 (2001).Presents a phylogenetic analysis of the most taxonomically diverse sequence data set for placental mammals.
    CAS PubMed Google Scholar
  85. Rosenberg, M. S. & Kumar, S. Incomplete taxon sampling is not a problem for phylogenetic inference. Proc. Natl Acad. Sci. USA 98, 10751–10756 (2001).
    CAS PubMed PubMed Central Google Scholar
  86. Aguinaldo, A. M. et al. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493 (1997).An influential paper that describes an analysis of sequences from the small subunit ribosomal RNA gene of animals. As a result, nematodes are placed together with arthropods in a controversial grouping dubbed 'Ecdysozoa' (see also reference 93).
    CAS PubMed Google Scholar
  87. Adoutte, A. et al. The new animal phylogeny: reliability and implications. Proc. Natl Acad. Sci. USA 97, 4453–4456 (2000).
    CAS PubMed PubMed Central Google Scholar
  88. deRosa, R. et al. Hox genes in brachiopods and priapulids and protostome evolution. Nature 399, 772–776 (1999).
    CAS Google Scholar
  89. Manual, M., Kruse, M., Muller, W. E. G. & Parco, Y. L. The comparison of β-thymosin homologues among Metazoa supports an arthropod–nematode clade. J. Mol. Evol. 51, 378–381 (2000).
    Google Scholar
  90. Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. From DNA to Diversity (Blackwell Science, Malden, Massachusetts, 2001).
    Google Scholar
  91. Davidson, E. H. Genomic Regulatory Systems (Academic, San Diego, 2001).
    Google Scholar
  92. Hausdorf, B. Early evolution of the bilateria. Syst. Biol. 49, 130–142 (2000).
    CAS PubMed Google Scholar
  93. Blair, J. E., Ikeo, K., Gojobori, T. & Hedges, S. B. The evolutionary position of nematodes. BMC Evol. Biol. 2, 7 (2002).
    PubMed PubMed Central Google Scholar
  94. Mushegian, A. R., Garey, J. R., Martin, J. & Liu, L. X. Large-scale taxonomic profiling of eukaryotic model organisms: a comparison of orthologous proteins encoded by the human, fly, nematode, and yeast genomes. Genome Res. 8, 590–598 (1998).
    CAS PubMed Google Scholar
  95. Easteal, S. & Herbert, G. Molecular evidence from the nuclear genome for the time frame of human evolution. J. Mol. Evol. 44, S121–S132 (1997).
    CAS PubMed Google Scholar
  96. Arnason, U., Gullberg, A., Burgeuete, A. S. & Janke, A. Molecular estimates of primate divergences and new hypotheses for primate dispersal and the origin of modern humans. Hereditas 133, 217–228 (2001).
    CAS Google Scholar
  97. Stauffer, R. L., Walker, A., Ryder, O. A., Lyons-Weiler, M. & Hedges, S. B. Human and ape molecular clocks and constraints on paleontological hypotheses. J. Hered. 92, 469–474 (2001).
    CAS PubMed Google Scholar
  98. Chen, F.-C. & Li, W.-H. Genomic divergences between humans and other hominoids and effective population size of the common ancestor of humans and chimpanzees. Am. J. Hum. Genet. 68, 444–456 (2001).
    CAS PubMed PubMed Central Google Scholar
  99. Leakey, M. G., Feibel, C. S., McDougall, I. & Walker, A. New four-million-year-old hominid species from Kanapoi and Allia Bay, Kenya. Nature 376, 565–571 (1995).
    CAS PubMed Google Scholar
  100. Wood, B. Hominid revelations from Chad. Nature 418, 134–135 (2002).
    Google Scholar
  101. Brunet, M. et al. A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418, 145–151 (2002).
    CAS PubMed Google Scholar
  102. Adkins, R. M., Gelke, E. L., Rowe, D. & Honeycutt, R. L. Molecular phylogeny and divergence time estimates for major rodent groups: evidence frm multiple genes. Mol. Biol. Evol. 18, 777–791 (2001).
    CAS PubMed Google Scholar
  103. Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl Acad. Sci. USA 99, 803–808 (2002).
    CAS PubMed PubMed Central Google Scholar
  104. Benton, M. J. Vertebrate Palaeontology 452 (Blackwell Science, Oxford, 2000).
    Google Scholar
  105. Hedges, S. B., Parker, P. H., Sibley, C. G. & Kumar, S. Continental breakup and the ordinal diversification of birds and mammals. Nature 381, 226–229 (1996).
    CAS PubMed Google Scholar
  106. Archibald, J. D. Fossil evidence for a late Cretaceous origin of "hoofed" mammals. Science 272, 1150–1153 (1996).
    CAS PubMed Google Scholar
  107. Springer, M. S. et al. Endemic African mammals shake the phylogenetic tree. Nature 388, 61–63 (1997).Sequence analyses define a superorder of mammals, now termed 'Afrotheria', that includes elephants, sea cows, hyraxes, aardvarks, golden moles and elephant shrews. After publication of this paper, tenrecs have also been added to this group. Support for the superorder continues to remain strong.
    CAS PubMed Google Scholar
  108. Wray, G. A., Levinton, J. S. & Shapiro, L. H. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science 274, 568–573 (1996).
    CAS Google Scholar
  109. Fortey, R. A., Briggs, D. E. G. & Wills, M. A. The Cambrian evolutionary 'explosion': decoupling cladogenesis from morphological disparity. Biol. J. Linn. Soc. Lon. 57, 13–33 (1996).
    Google Scholar
  110. Valentine, J. W., Jablonski, D. & Erwin, D. H. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126, 851–859 (1999).
    CAS PubMed Google Scholar
  111. Budd, G. E. & Jensen, S. A critical reappraisal of the fossil record of the bilaterian phyla. Biol. Rev. 75, 253–295 (2000).
    CAS PubMed Google Scholar
  112. Smith, A. B. & Peterson, K. J. Dating the time of origin of major clades: molecular clocks and the fossil record. Annu. Rev. Earth Planet. Sci. Lon. 30, 65–88 (2002).
    CAS Google Scholar
  113. Knoll, A. H. in Early Life on Earth (ed. Bengtson, S.) 439–449 (Columbia Univ. Press, New York, 1994).
    Google Scholar
  114. Knoll, A. H. & Carroll, S. B. Early animal evolution: emerging views from comparative biology and geology. Science 284, 2129–2137 (1999).
    CAS PubMed Google Scholar
  115. Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998).
    CAS PubMed Google Scholar
  116. Rasmussen, B., Bengston, S., Fletcher, I. R. & McNaughton, N. J. Discoidal impressions and trace-like fossils more than 1200 million years old. Science 296, 1112–1115 (2002).
    CAS PubMed Google Scholar
  117. Nei, M. & Kumar, S. Molecular Evolution and Phylogenetics (Oxford Univ. Press, New York, 2000).
    Google Scholar
  118. Rannala, B. & Yang, Z. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J. Mol. Evol. 43, 304–311 (1996).
    CAS PubMed Google Scholar
  119. Felsenstein, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985).
    PubMed Google Scholar
  120. Zuckerkandl, E. & Pauling, L. in Horizons in Biochemistry (eds Marsha, M. & Pullman, B.) 189–225 (Academic, New York, 1962).
    Google Scholar
  121. Sanderson, M. J. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol. Biol. Evol. 19, 101–109 (2002).
    CAS PubMed Google Scholar
  122. Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999).
    CAS PubMed Google Scholar
  123. Han, T.-M. & Runnegar, B. Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee iron-formation, Michigan. Science 257, 232–235 (1992).
    CAS PubMed Google Scholar
  124. Javaux, E. J., Knoll, A. H. & Walter, M. R. Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412, 66–69 (2001).
    CAS PubMed Google Scholar
  125. Wikström, N. Savolainen, V. & Chase, M. W. Evolution of the angiosperms: calibrating the family tree. Proc. R. Soc. Lond. B Biol. Sci. 268, 2211–2220 (2001).
    Google Scholar
  126. James, T. Y., Porter, D., Leander, C. A., Vilgalys, R. & Longcore, J. E. Molecular phylogenies of the Chytridiomycota supports the utility of ultrastructural data in chytrid systematics. Can. J. Bot. 78, 336–350 (2000).
    CAS Google Scholar

Download references