NODs: intracellular proteins involved in inflammation and apoptosis (original) (raw)
Dangl, J. L. & Jones, J. D. Plant pathogens and integrated defence responses to infection. Nature411, 826–833 (2001). CASPubMed Google Scholar
Medzhitov, R. Toll-like receptors and innate immunity. Nature Rev. Immunol.1, 135–145 (2001). ArticleCAS Google Scholar
Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol.2, 675–680 (2001). CAS Google Scholar
Aballay, A. & Ausubel, F. M. Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from _Salmonella typhimurium_-mediated killing. Proc. Natl Acad. Sci. USA98, 2735–2739 (2001). CASPubMedPubMed Central Google Scholar
Liu, Q. A. & Hengartner, M. O. The molecular mechanism of programmed cell death in C. elegans. Ann. NY Acad. Sci.887, 92–104 (1999). CASPubMed Google Scholar
Derry, W. B., Putzke, A. P. & Rothman, J. H. Caenorhabditis elegans p53: role in apoptosis, meiosis, and stress resistance. Science294, 591–595 (2001). CASPubMed Google Scholar
Nanduri, S., Rahman, F., Williams, B. R. & Qin, J. A dynamically tuned double-stranded RNA binding mechanism for the activation of antiviral kinase PKR. EMBO J.19, 5567–5574 (2000). CASPubMedPubMed Central Google Scholar
Philpott, D. J., Yamaoka, S., Israel, A. & Sansonetti, P. J. Invasive Shigella flexneri activates NF-κB through a lipopolysaccharide-dependent innate intracellular response and leads to IL-8 expression in epithelial cells. J. Immunol.165, 903–914 (2000). CASPubMed Google Scholar
O'Riordan, M., Yi, C. H., Gonzales, R., Lee, K. D. & Portnoy, D. A. Innate recognition of bacteria by a macrophage cytosolic surveillance pathway. Proc. Natl Acad. Sci. USA99, 13861–13866 (2002). CASPubMedPubMed Central Google Scholar
Inohara, N. & Nuñez, G. The NOD: a signaling module that regulate apoptosis and host defense against pathogens. Oncogene20, 6473–6481 (2001). CASPubMed Google Scholar
Inohara, N., Ogura, Y. & Nuñez, G. Nods: a family of cytosolic proteins that regulate the host response to pathogens. Curr. Opin. Microbiol.5, 76–80 (2002). CASPubMed Google Scholar
Hull, K. M., Shoham, N., Chae, J. J., Aksentijevich, I. & Kastner, D. L. The expanding spectrum of systemic autoinflammatory disorders and their rheumatic manifestations. Curr. Opin. Rheumatol.15, 61–69 (2003). CASPubMed Google Scholar
van der Biezen, E. A. & Jones, J. D. The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol.8, R226–R227 (1998). CASPubMed Google Scholar
Hu, Y., Ding, L., Spencer, D. M. & Nuñez, G. WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J. Biol. Chem.273, 33489–33494 (1998). CASPubMed Google Scholar
Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T. & Alnemri, E. S. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell.1, 949–957 (1998). CASPubMed Google Scholar
Yang, X., Chang, H. Y. & Baltimore, D. Essential role of CED-4 oligomerization in CED-3 activation and apoptosis. Science281, 1355–1357 (1998). CASPubMed Google Scholar
Koonin, E. V. & Aravind, L. The NACHT family — a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends Biochem. Sci.25, 223–224 (2000). CASPubMed Google Scholar
The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature408, 796–815 (2000).
Goff, S. A. et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science296, 92–100 (2002). CASPubMed Google Scholar
Hofmann, K., Bucher, P. & Tschopp, J. The CARD domain: a new apoptotic signalling motif. Trends Biochem. Sci.22, 155–156 (1997). CASPubMed Google Scholar
Bertin, J. & DiStefano, P. S. The PYRIN domain: a novel motif found in apoptosis and inflammation proteins. Cell Death Differ.12, 1273–1274 (2000). Google Scholar
Martinon, F., Hofmann, K. & Tschopp, J. The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Curr. Biol.11, R118–R120 (2001). CASPubMed Google Scholar
Staub, E., Dahl, E. & Rosenthal, A. The DAPIN family: a novel domain links apoptotic and interferon response proteins. Trends Biochem. Sci.26, 83–85 (2001). CASPubMed Google Scholar
Pawlowski, K., Pio, F., Chu, Z., Reed, J. C. & Godzik, A. PAAD — a new protein domain associated with apoptosis, cancer and autoimmune diseases. Trends Biochem. Sci.26, 85–87 (2001). CASPubMed Google Scholar
Bertin, J. et al. Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-κB. J. Biol. Chem.274, 12955–12958 (1999). CASPubMed Google Scholar
Inohara, N. et al. Nod1, an Apaf1-like activator of caspase-9 and nuclear factor-κB. J. Biol. Chem.274, 14560–14567 (1999). CASPubMed Google Scholar
Ogura, Y. et al. Nod2, a Nod1/Apaf1 family member that is restricted to monocytes and activates NF-κB. J. Biol. Chem.276, 4812–4818 (2001). CASPubMed Google Scholar
Manji, G. A. et al. PYPAF1, a PYRIN-containing Apaf1-like protein that assembles with ASC and regulates activation of NF-κB. J. Biol. Chem.277, 11570–11575 (2002). CASPubMed Google Scholar
Dowds, A. et al. Regulation of Cryopyrin/Pypaf1 signaling by pyrin, the familial mediterranean fever gene product. Biochem. Biophys. Res. Commun.302, 575–580 (2003). CASPubMed Google Scholar
Harton, J. A., Linhoff, M. W., Zhang, J. & Ting, J. P. Cutting edge. CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J. Immunol.169, 4088–4093 (2002). CASPubMed Google Scholar
Geddes, B. J. et al. Human CARD12 is a novel CED4/Apaf1 family member that induces apoptosis. Biochem. Biophys. Res. Commun.284, 77–82 (2001). CASPubMed Google Scholar
Poyet, J. L. et al. Identification of Ipaf, a human caspase-1-activating protein related to Apaf1. J. Biol. Chem.276, 28309–28313 (2001). CASPubMed Google Scholar
Damiano, J. S. et al. Clan, a novel human _Ced-4_-like gene. Genomics75, 77–83 (2001). CASPubMed Google Scholar
Hlaing, T. et al. Molecular cloning and characterization of DEFCAP-L and -S, two isoforms of a novel member of the mammalian Ced-4 family of apoptosis proteins. J. Biol. Chem.276, 9230–9238 (2001). CASPubMed Google Scholar
Chu, Z. L. et al. A novel enhancer of the Apaf1 apoptosome involved in cytochrome _c_-dependent caspase activation and apoptosis. J. Biol. Chem.276, 9239–9245 (2001). CASPubMed Google Scholar
Hoffman, H. M., Mueller, J. L., Broide, D. H., Wanderer, A. A. & Kolodner, R. D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nature Genet.29, 301–305 (2001). The first evidence for a genetic association between cryopyrin and the development of familial cold urticaria and Muckle-Wells syndrome. CASPubMed Google Scholar
Wang, L. et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-κB and caspase-1-dependent cytokine processing. J. Biol. Chem.277, 29874–29880 (2002). CASPubMed Google Scholar
Grenier, J. M. et al. Functional screening of five PYPAF family members identifies PYPAF5 as a novel regulator of NF-κB and caspase-1. FEBS Lett.530, 73–78 (2002). CASPubMed Google Scholar
Tong, Z. B., Bondy, C. A., Zhou, J. & Nelson, L. M. A human homologue of mouse mater, a maternal effect gene essential for early embryonic development. Hum. Reprod.17, 903–911 (2002). CASPubMed Google Scholar
Roy, N. et al. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell.80, 167–178 (1995). CASPubMed Google Scholar
Xu, M. et al. Functional human NAIP promoter transcription regulatory elements for the NAIP and PsiNAIP genes. Biochim. Biophys. Acta1574, 35–50 (2002). CASPubMed Google Scholar
Riedl, S. J. et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell104, 791–800 (2001). CASPubMed Google Scholar
Liu, Z. et al. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature408, 1004–1008 (2000). CASPubMed Google Scholar
Wu, G. et al. Structural basis of IAP recognition by Smac/DIABLO. Nature408, 1008–1012 (2000). CASPubMed Google Scholar
Steimle, V., Otten, L. A., Zufferey, M. & Mach, B. Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell75, 135–146 (1993). CASPubMed Google Scholar
Reith, W. & Mach, B. The bare lymphocyte syndrome and the regulation of MHC expression. Annu. Rev. Immunol.19, 331–373 (2001). CASPubMed Google Scholar
Nickerson, K. et al. Dendritic cell-specific MHC class II transactivator contains a caspase recruitment domain that confers potent transactivation activity. J. Biol. Chem.276, 19089–19093 (2001). CASPubMed Google Scholar
Lahaye, T. The Arabidopsis RRS1-R disease resistance gene — uncovering the plant's nucleus as the new battlefield of plant defense? Trends Plant Sci.7, 425–427 (2002). CASPubMed Google Scholar
Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell10, 417–426 (2002). CASPubMed Google Scholar
Zou, H., Henzel, W. J., Liu, X., Lutschg, A. & Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome _c_-dependent activation of caspase-3. Cell90, 405–413 (1997). In this paper, the authors cloned and characterized APAF1, the first NOD protein to be identified in mammals. CASPubMed Google Scholar
Benedict, M. A., Hu, Y., Inohara, N. & Nuñez, G. Expression and functional analysis of Apaf-1 isoforms. Extra WD-40 repeat is required for cytochrome-c binding and regulated activation of procaspase-9. J. Biol. Chem.275, 8461–8468 (2000). CASPubMed Google Scholar
Qin, H. et al. Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature399, 549–557 (1999). CASPubMed Google Scholar
Saleh, A. et al. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem.274, 17941–17945 (1999). CASPubMed Google Scholar
Inohara, N. et al. An induced proximity model for NF-κB activation in the Nod1/RICK and RIP signaling pathways. J. Biol. Chem.275, 27823–27831 (2000). This paper provides a general model for activation of NOD-LRR proteins through NOD oligomerization and induced proximity of downstream effectors. CASPubMed Google Scholar
Inohara, N. et al. Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J. Biol. Chem.276, 2551–2554 (2001). The first evidence that NOD proteins recognize bacterial components. CASPubMed Google Scholar
Girardin, S. E. et al. CARD4/Nod1 mediates NF-κB and JNK activation by invasive Shigella flexneri. EMBO Rep.2, 736–742 (2001). CASPubMedPubMed Central Google Scholar
Srinivasula, S. M. et al. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J. Biol. Chem.277, 21119–21122 (2002). CASPubMed Google Scholar
Masumoto, J. et al. ASC is an activating adaptor for NF-κB and caspase-8-dependent apoptosis. Biochem. Biophys. Res. Commun.303, 69–73 (2003). CASPubMed Google Scholar
Kobayashi, K. et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature416, 194–199 (2002). CASPubMed Google Scholar
Masumoto, J. et al. ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J. Biol. Chem.274, 33835–33838 (1999). CASPubMed Google Scholar
Yoo, N. J. et al. Nod1, a CARD protein, enhances pro-interleukin-1β processing through the interaction with pro-caspase-1. Biochem. Biophys. Res. Commun.299, 652–658 (2002). CASPubMed Google Scholar
Linhoff, M. W., Harton, J. A., Cressman, D. E., Martin, B. K. & Ting, J. P. Two distinct domains within CIITA mediate self-association: involvement of the GTP-binding and leucine-rich repeat domains. Mol. Cell. Biol.21, 3001–3011 (2001). CASPubMedPubMed Central Google Scholar
Kretsovali, A., Spilianakis, C., Dimakopoulos, A., Makatounakis, T. & Papamatheakis, J. Self-association of class II transactivator correlates with its intracellular localization and transactivation. J. Biol. Chem.276, 32191–32197 (2001). CASPubMed Google Scholar
Sisk, T. J., Roys, S. & Chang, C. H. Self-association of CIITA and its transactivation potential. Mol. Cell. Biol.21, 4919–4928 (2001). CASPubMedPubMed Central Google Scholar
Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature411, 603–606 (2001). This paper (together with reference 90) provides the first evidence that NOD2 mutations are associated with susceptibility to Crohn's disease. In addition, the paper provides the first evidence that disease variants are defective in the recognition of bacterial components. CASPubMed Google Scholar
Bonen, D. K. et al. Crohn's disease-associated NOD2 variants share a signaling defect in response to lipopolysaccharide and peptidoglycan. Gastroenterology124, 140–146 (2003). CASPubMed Google Scholar
Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn's disease. J. Biol. Chem.278, 5509–5512 (2003). CASPubMed Google Scholar
Girardin, S. E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem.278, 8869–8872 (2003). CASPubMed Google Scholar
Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nature Med.5, 1249–1255 (1999). CASPubMed Google Scholar
Matzinger, P. The danger model: a renewed sense of self. Science296, 301–305 (2002). CASPubMed Google Scholar
Aliprantis, A. O. et al. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science285, 736–739 (1999). CASPubMed Google Scholar
Aliprantis, A. O., Yang, R. B., Weiss, D. S., Godowski, P. & Zychlinsky, A. The apoptotic signaling pathway activated by Toll-like receptor-2. EMBO J.19, 3325–3336 (2000). CASPubMedPubMed Central Google Scholar
Balachandran, S. et al. Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J.17, 6888–6902 (1998). CASPubMedPubMed Central Google Scholar
Ashkenazi, A. & Dixit, V. M. Death receptors: signaling and modulation. Science281, 1305–1308 (1998). CASPubMed Google Scholar
Beg, A. A. & Baltimore, D. An essential role for NF-κB in preventing TNF-α-induced cell death. Science274, 782–784 (1996). CASPubMed Google Scholar
Wang, C. Y., Mayo, M. W., Korneluk, R. G., Goeddel, D. V. & Baldwin, A. S. Jr. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science281, 1680–1683 (1998). CASPubMed Google Scholar
Micheau, O., Lens, S., Gaide, O., Alevizopoulos, K. & Tschopp, J. NF-κB signals induce the expression of c-FLIP. Mol. Cell. Biol.21, 5299–5305 (2001). CASPubMedPubMed Central Google Scholar
Holtje, J. V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev.62, 181–203 (1998). CASPubMedPubMed Central Google Scholar
Nau, G. J. et al. Human macrophage activation programs induced by bacterial pathogens. Proc. Natl Acad. Sci. USA99, 1503–1508 (2002). CASPubMedPubMed Central Google Scholar
Takada, H. & Kotani, S. in The Theory and Practical Application of Adjuvants (ed. Stewart, D. E. S.) 171–202 (Wiley, Chichester, 1995). Google Scholar
Heinzelmann, M. et al. Endotoxin and muramyl dipeptide modulate surface receptor expression on human mononuclear cells. Immunopharmacology48, 117–128 (2000). CASPubMed Google Scholar
Todate, A. et al. Muramyl dipeptide-Lys stimulates the function of human dendritic cells. J. Leukocyte Biol.70, 723–739 (2001). CASPubMed Google Scholar
Gutierrez, O. et al. Induction of NOD2 in myelomonocytic and intestinal epithelial cells via nuclear factor-κB activation. J. Biol. Chem.277, 41701–41705 (2002). CASPubMed Google Scholar
Yang, S. et al. Synergistic effect of muramyldipeptide with lipopolysaccharide or lipoteichoic acid to induce inflammatory cytokines in human monocytic cells in culture. Infect. Immun.69, 2045–2053 (2001). CASPubMedPubMed Central Google Scholar
Ribi, E. E., Cantrell, J. L., Von Eschen, K. B. & Schwartzman, S. M. Enhancement of endotoxic shock by N-acetylmuramyl-L-alanyl-(L-seryl)-D-isoglutamine (muramyl dipeptide). Cancer Res.39, 4756–4759 (1979). CASPubMed Google Scholar
Wolfert, M. A., Murray, T. F., Boons, G. J. & Moore, J. N. The origin of the synergistic effect of muramyl dipeptide with endotoxin and peptidoglycan. J. Biol. Chem.277, 39179–39186 (2002). CASPubMed Google Scholar
Braun, L. & Cossart, P. Interactions between Listeria monocytogenes and host mammalian cells. Microbes Infect.2, 803–811 (2000). CASPubMed Google Scholar
Wiszniewski, W. et al. Mutation in the class II trans-activator leading to a mild immunodeficiency. J. Immunol.167, 1787–1794 (2001). CASPubMed Google Scholar
Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature411, 599–603 (2001). CASPubMed Google Scholar
Hampe, J. et al. Association between insertion mutation in NOD2 gene and Crohn's disease in German and British populations. Lancet357, 1925–1928 (2001). CASPubMed Google Scholar
Miceli-Richard, C. et al. CARD15 mutations in Blau syndrome. Nature Genet.29, 19–20 (2001). CASPubMed Google Scholar
Wang, X. et al. CARD15 mutations in familial granulomatosis syndromes: a study of the original Blau syndrome kindred and other families with large-vessel arteritis and cranial neuropathy. Arthritis Rheum.46, 3041–3045 (2002). CASPubMed Google Scholar
Chamaillard, M. et al. Gene/environment interaction modulated by allelic heterogeneity in inflammatory diseases. Proc. Natl Acad. Sci. USA100, 3455–3460 (2003). CASPubMedPubMed Central Google Scholar
Dode, C. et al. New mutations of CIAS1 that are responsible for Muckle-Wells syndrome and familial cold urticaria: a novel mutation underlies both syndromes. Am. J. Hum. Genet.70, 1498–1506 (2002). CASPubMedPubMed Central Google Scholar
Feldmann, J. et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am. J. Hum. Genet.71, 198–203 (2002). CASPubMedPubMed Central Google Scholar
Aksentijevich, I. et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum.46, 3340–3348 (2002). CASPubMedPubMed Central Google Scholar
Aganna, E. et al. Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum.46, 2445–2452 (2002). CASPubMed Google Scholar
The International FMF Consortium. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial mediterranean fever. Cell90, 797–807 (1997). The first evidence (together with reference 100) that pyrin mutations are associated with familial Mediterranean fever.
The French FMF Consortium. A candidate gene for familial mediterranean fever. Nature Genet.17, 25–31 (1997).
Richards, N. et al. Interaction between pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. J. Biol. Chem.276, 39320–39329 (2001). CASPubMed Google Scholar
Lefebvre, S. et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell80, 155–165 (1995). CASPubMed Google Scholar
Hsieh-Li, H. M. et al. A mouse model for spinal muscular atrophy. Nature Genet.24, 66–70 (2000). CASPubMed Google Scholar
Yaraghi, Z., Korneluk, R. G. & MacKenzie, A. Cloning and characterization of the multiple murine homologues of NAIP (neuronal apoptosis inhibitory protein). Genomics51, 107–113 (1998). CASPubMed Google Scholar
Diez, E. et al. Genetic and physical mapping of the mouse host resistance locus Lgn1. Mamm. Genome8, 682–685 (1997). CASPubMed Google Scholar
Scharf, J. M. et al. The mouse Naip gene cluster on chromosome 13 encodes several distinct functional transcripts. Mamm. Genome10, 1032–1035 (1999). PubMed Google Scholar
Beckers, M. C., Yoshida, S., Morgan, K., Skamene, E. & Gros, P. Natural resistance to infection with Legionella pneumophila: chromosomal localization of the Lgn1 susceptibility gene. Mamm. Genome6, 540–545 (1995). CASPubMed Google Scholar
Dietrich, W. F., Damron, D. M., Isberg, R. R., Lander, E. S. & Swanson, M. S. Lgn1, a gene that determines susceptibility to Legionella pneumophila, maps to mouse chromosome 13. Genomics26, 443–450 (1995). CASPubMed Google Scholar
Wright, E. K. et al. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr. Biol.13, 27–36 (2003). CASPubMed Google Scholar
Diez, E. et al. Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nature Genet.33, 55–60 (2003). CASPubMed Google Scholar
Watarai, M. et al. Legionella pneumophila is internalized by a macropinocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lgn1 locus. J. Exp. Med.194, 1081–1096 (2001). CASPubMedPubMed Central Google Scholar
Eulgem, T., Rushton, P. J., Robatzek, S. & Somssich, I. E. The WRKY superfamily of plant transcription factors. Trends Plant Sci.5, 199–206 (2000). CASPubMed Google Scholar
Fiorentino, L. et al. A novel PAAD-containing protein that modulates NF-κB induction by cytokines tumor necrosis factor-α and interleukin-1β. J. Biol. Chem.277, 35333–35340 (2002). CASPubMed Google Scholar
Diez, E., Yaraghi, Z., MacKenzie, A. & Gros, P. The neuronal apoptosis inhibitory protein (Naip) is expressed in macrophages and is modulated after phagocytosis and during intracellular infection with Legionella pneumophila. J. Immunol.164, 1470–1477 (2000). CASPubMed Google Scholar
Tschopp, J., Martinon, F. & Burns, K. NALPs: a novel protein family involved in inflammation. Nature Rev. Mol. Cell Biol.4, 95–104 (2003). CAS Google Scholar