A new self: MHC-class-I-independent Natural-killer-cell self-tolerance (original) (raw)
Stetson, D. B. et al. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med.198, 1069–1076 (2003). CASPubMedPubMed Central Google Scholar
Tato, C. M. et al. Innate production of IFN-γ by NK cells is independent of epigenetic modification of the IFN-γ promoter. J. Immunol.173, 1514–1517 (2004). CASPubMed Google Scholar
Walker, L. S. & Abbas, A. K. The enemy within: keeping self-reactive T cells at bay in the periphery. Nature Rev. Immunol.2, 11–19 (2002). CAS Google Scholar
Raulet, D. H., Vance, R. E. & McMahon, C. W. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol.19, 291–330 (2001). CASPubMed Google Scholar
Karre, K., Ljunggren, H. G., Piontek, G. & Kiessling, R. Selective rejection of H–2-deficient lymphoma variants suggests alternative immune defence strategy. Nature319, 675–678 (1986). CASPubMed Google Scholar
Tay, C. H., Szomolanyi-Tsuda, E. & Welsh, R. M. Control of infections by NK cells. Curr. Top. Microbiol. Immunol.230, 193–220 (1998). CASPubMed Google Scholar
Yu, Y. Y., Kumar, V. & Bennett, M. Murine natural killer cells and marrow graft rejection. Annu. Rev. Immunol.10, 189–213 (1992). CASPubMed Google Scholar
Lanier, L. L. NK cell recognition. Annu. Rev. Immunol.23, 225–274 (2005). CASPubMed Google Scholar
Vance, R. E., Kraft, J. R., Altman, J. D., Jensen, P. E. & Raulet, D. H. Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1b. J. Exp. Med.188, 1841–1848 (1998). CASPubMedPubMed Central Google Scholar
Lee, N. et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc. Natl Acad. Sci. USA95, 5199–5204 (1998). CASPubMedPubMed Central Google Scholar
Braud, V. M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature391, 795–799 (1998). CASPubMed Google Scholar
Chapman, T. L., Heikeman, A. P. & Bjorkman, P. J. The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity11, 603–613 (1999). CASPubMed Google Scholar
Liao, N. S., Bix, M., Zijlstra, M., Jaenisch, R. & Raulet, D. MHC class I deficiency: susceptibility to natural killer (NK) cells and impaired NK activity. Science253, 199–202 (1991). CASPubMed Google Scholar
Hoglund, P. et al. Recognition of β2-microglobulin-negative (β2m−) T-cell blasts by natural killer cells from normal but not from β2m− mice: nonresponsiveness controlled by β2m− bone marrow in chimeric mice. Proc. Natl Acad. Sci. USA88, 10332–10336 (1991). CASPubMedPubMed Central Google Scholar
de la Salle, H. et al. Homozygous human TAP peptide transporter mutation in HLA class I deficiency. Science265, 237–241 (1994). CASPubMed Google Scholar
Zimmer, J. et al. Activity and phenotype of natural killer cells in peptide transporter (TAP)-deficient patients (type I bare lymphocyte syndrome). J. Exp. Med.187, 117–122 (1998). CASPubMedPubMed Central Google Scholar
Dorfman, J. R., Zerrahn, J., Coles, M. C. & Raulet, D. H. The basis for self-tolerance of natural killer cells in β2-microglobulin− and TAP-1− mice. J. Immunol.159, 5219–5225 (1997). CASPubMed Google Scholar
Salcedo, M. et al. Fine tuning of natural killer cell specificity and maintenance of self tolerance in MHC class I-deficient mice. Eur. J. Immunol.28, 1315–1321 (1998). CASPubMed Google Scholar
Markel, G. et al. The mechanisms controlling NK cell autoreactivity in TAP2-deficient patients. Blood103, 1770–1778 (2004). This study shows that increased CEACAM1 expression prevents NK-cell autoreactivity in TAP2-deficient patients. CASPubMed Google Scholar
Vitale, M. et al. Analysis of natural killer cells in TAP2-deficient patients: expression of functional triggering receptors and evidence for the existence of inhibitory receptor(s) that prevent lysis of normal autologous cells. Blood99, 1723–1729 (2002). This paper shows that triggering receptors in TAP2-deficient patients are functional, and the authors suggest a role for non-MHC-binding inhibitory receptors in self-tolerance. CASPubMed Google Scholar
Furukawa, H., Iizuka, K., Poursine-Laurent, J., Shastri, N. & Yokoyama, W. M. A ligand for the murine NK activation receptor Ly-49D: activation of tolerized NK cells from β2-microglobulin-deficient mice. J. Immunol.169, 126–136 (2002). CASPubMed Google Scholar
Fernandez, N. C. et al. A subset of natural killer cells achieve self-tolerance without expressing inhibitory receptors specific for self MHC molecules. Blood 22 Feb 2005 (10.1182/blood-2004-1108-3156). Google Scholar
Yu, Y. Y. et al. The role of Ly49A and 5E6 (Ly49C) molecules in hybrid resistance mediated by murine natural killer cells against normal T cell blasts. Immunity4, 67–76 (1996). CASPubMed Google Scholar
Liu, J. et al. Ly49I NK cell receptor transgene inhibition of rejection of H2b mouse bone marrow transplants. J. Immunol.164, 1793–1799 (2000). CASPubMed Google Scholar
Sivakumar, P. V. et al. Expression of functional CD94/NKG2A inhibitory receptors on fetal NK1.1+Ly-49− cells: a possible mechanism of tolerance during NK cell development. J. Immunol.162, 6976–6980 (1999). CASPubMed Google Scholar
Dorfman, J. R. & Raulet, D. H. Acquisition of Ly49 receptor expression by developing natural killer cells. J. Exp. Med.187, 609–618 (1998). CASPubMedPubMed Central Google Scholar
Vance, R. E., Jamieson, A. M., Cado, D. & Raulet, D. H. Implications of CD94 deficiency and monoallelic NKG2A expression for natural killer cell development and repertoire formation. Proc. Natl Acad. Sci. USA99, 868–873 (2002). CASPubMedPubMed Central Google Scholar
Sivori, S. et al. Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc. Natl Acad. Sci. USA99, 4526–4531 (2002). CASPubMedPubMed Central Google Scholar
Lee, K. M. et al. 2B4 acts as a non-major histocompatibility complex binding inhibitory receptor on mouse natural killer cells. J. Exp. Med.199, 1245–1254 (2004). This paper, together with references 38 and 39, characterizes 2B4-deficient mice, showing that 2B4 inhibits NK cells and that this outcome is not regulated by SAP. CASPubMedPubMed Central Google Scholar
Boles, K. S., Stepp, S. E., Bennett, M., Kumar, V. & Mathew, P. A. 2B4 (CD244) and CS1: novel members of the CD2 subset of the immunoglobulin superfamily molecules expressed on natural killer cells and other leukocytes. Immunol. Rev.181, 234–249 (2001). CASPubMed Google Scholar
Kubota, K. A structurally variant form of the 2B4 antigen is expressed on the cell surface of mouse mast cells. Microbiol. Immunol.46, 589–592 (2002). CASPubMed Google Scholar
Munitz, A. et al. 2B4 (CD244) is expressed and functional on human eosinophils. J. Immunol.174, 110–118 (2005). CASPubMed Google Scholar
McNerney, M. E., Lee, K. M. & Kumar, V. 2B4 (CD244) is a non-MHC binding receptor with multiple functions on natural killer cells and CD8+ T cells. Mol. Immunol.42, 489–494 (2005). CASPubMed Google Scholar
Engel, P., Eck, M. J. & Terhorst, C. The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Nature Rev. Immunol.3, 813–821 (2003). CAS Google Scholar
Brown, M. H. et al. 2B4, the natural killer and T cell immunoglobulin superfamily surface protein, is a ligand for CD48. J. Exp. Med.188, 2083–2090 (1998). CASPubMedPubMed Central Google Scholar
Valiante, N. M. & Trinchieri, G. Identification of a novel signal transduction surface molecule on human cytotoxic lymphocytes. J. Exp. Med.178, 1397–1406 (1993). CASPubMed Google Scholar
Garni-Wagner, B. A., Purohit, A., Mathew, P. A., Bennett, M. & Kumar, V. A novel function-associated molecule related to non-MHC-restricted cytotoxicity mediated by activated natural killer cells and T cells. J. Immunol.151, 60–70 (1993). CASPubMed Google Scholar
Mooney, J. M. et al. The murine NK receptor 2B4 (CD244) exhibits inhibitory function independent of signaling lymphocytic activation molecule-associated protein expression. J. Immunol.173, 3953–3961 (2004). CASPubMed Google Scholar
Vaidya, S. V. et al. Targeted disruption of the 2B4 gene in mice reveals an in vivo role of 2B4 (CD244) in the rejection of B16 melanoma cells. J. Immunol.174, 800–807 (2005). CASPubMed Google Scholar
Lee, K. M. et al. The NK cell receptor 2B4 augments antigen-specific T cell cytotoxicity through CD48 ligation on neighboring T cells. J. Immunol.170, 4881–4885 (2003). CASPubMed Google Scholar
Assarsson, E. et al. NK cells stimulate proliferation of T and NK cells through 2B4/CD48 interactions. J. Immunol.173, 174–180 (2004). CASPubMed Google Scholar
Kambayashi, T., Assarsson, E., Chambers, B. J. & Ljunggren, H. G. Regulation of CD8+ T cell proliferation by 2B4/CD48 interactions. J. Immunol.167, 6706–6710 (2001). CASPubMed Google Scholar
Tangye, S. G., Phillips, J. H., Lanier, L. L. & Nichols, K. E. Functional requirement for SAP in 2B4-mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome. J. Immunol.165, 2932–2936 (2000). CASPubMed Google Scholar
Tangye, S. G., Cherwinski, H., Lanier, L. L. & Phillips, J. H. 2B4-mediated activation of human natural killer cells. Mol. Immunol.37, 493–501 (2000). CASPubMed Google Scholar
Parolini, S. et al. X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein–Barr virus-infected cells. J. Exp. Med.192, 337–346 (2000). CASPubMedPubMed Central Google Scholar
Glimcher, L., Shen, F. W. & Cantor, H. Identification of a cell-surface antigen selectively expressed on the natural killer cell. J. Exp. Med.145, 1–9 (1977). CASPubMed Google Scholar
Koo, G. C. & Peppard, J. R. Establishment of monoclonal anti-NK-1.1 antibody. Hybridoma3, 301–303 (1984). CASPubMed Google Scholar
Arase, N. et al. Association with FcRγ is essential for activation signal through NKR-P1 (CD161) in natural killer (NK) cells and NK1.1+ T cells. J. Exp. Med.186, 1957–1963 (1997). CASPubMedPubMed Central Google Scholar
Carlyle, J. R. et al. Mouse NKR-P1B, a novel NK1.1 antigen with inhibitory function. J. Immunol.162, 5917–5923 (1999). CASPubMed Google Scholar
Kung, S. K., Su, R. C., Shannon, J. & Miller, R. G. The NKR-P1B gene product is an inhibitory receptor on SJL/J NK cells. J. Immunol.162, 5876–5887 (1999). CASPubMed Google Scholar
Iizuka, K., Naidenko, O. V., Plougastel, B. F., Fremont, D. H. & Yokoyama, W. M. Genetically linked C-type lectin-related ligands for the NKRP1 family of natural killer cell receptors. Nature Immunol.4, 801–807 (2003). CAS Google Scholar
Carlyle, J. R. et al. Missing self-recognition of Ocil/Clr-b by inhibitory NKR-P1 natural killer cell receptors. Proc. Natl Acad. Sci. USA101, 3527–3532 (2004). References51and52identify CLRs as ligands for receptors of the NKR-P1 family. CASPubMedPubMed Central Google Scholar
Lanier, L. L., Chang, C. & Phillips, J. H. Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J. Immunol.153, 2417–2428 (1994). CASPubMed Google Scholar
Yokoyama, W. M. & Plougastel, B. F. Immune functions encoded by the natural killer gene complex. Nature Rev. Immunol.3, 304–316 (2003). CAS Google Scholar
Zhou, H. et al. A novel osteoblast-derived C-type lectin that inhibits osteoclast formation. J. Biol. Chem.276, 14916–14923 (2001). CASPubMed Google Scholar
Plougastel, B., Dubbelde, C. & Yokoyama, W. M. Cloning of Clr, a new family of lectin-like genes localized between mouse Nkrp1a and Cd69. Immunogenetics53, 209–214 (2001). CASPubMed Google Scholar
Boles, K. S., Barten, R., Kumaresan, P. R., Trowsdale, J. & Mathew, P. A. Cloning of a new lectin-like receptor expressed on human NK cells. Immunogenetics50, 1–7 (1999). CASPubMed Google Scholar
Mathew, P. A. et al. The LLT1 receptor induces IFN-γ production by human natural killer cells. Mol. Immunol.40, 1157–1163 (2004). CASPubMed Google Scholar
Hammarstrom, S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol.9, 67–81 (1999). CASPubMed Google Scholar
Moller, M. J., Kammerer, R., Grunert, F. & von Kleist, S. Biliary glycoprotein (BGP) expression on T cells and on a natural-killer-cell sub-population. Int. J. Cancer65, 740–745 (1996). CASPubMed Google Scholar
Markel, G. et al. The critical role of residues 43R and 44Q of carcinoembryonic antigen cell adhesion molecules-1 in the protection from killing by human NK cells. J. Immunol.173, 3732–3739 (2004). CASPubMed Google Scholar
Singer, B. B. et al. Carcinoembryonic antigen-related cell adhesion molecule 1 expression and signaling in human, mouse, and rat leukocytes: evidence for replacement of the short cytoplasmic domain isoform by glycosylphosphatidylinositol-linked proteins in human leukocytes. J. Immunol.168, 5139–5146 (2002). CASPubMed Google Scholar
Kammerer, R., Stober, D., Singer, B. B., Obrink, B. & Reimann, J. Carcinoembryonic antigen-related cell adhesion molecule 1 on murine dendritic cells is a potent regulator of T cell stimulation. J. Immunol.166, 6537–6544 (2001). CASPubMed Google Scholar
Markel, G. et al. CD66a interactions between human melanoma and NK cells: a novel class I MHC-independent inhibitory mechanism of cytotoxicity. J. Immunol.168, 2803–2810 (2002). This was one of the first reports on the inhibition of NK cells by CEACAM1, which led to much further research. CASPubMed Google Scholar
Markel, G. et al. Biological function of the soluble CEACAM1 protein and implications in TAP2-deficient patients. Eur. J. Immunol.34, 2138–2148 (2004). CASPubMed Google Scholar
Svenberg, T. et al. Serum level of biliary glycoprotein I, a determinant of cholestasis, of similar use as γ-glutamyltranspeptidase. Scand. J. Gastroenterol.16, 817–824 (1981). CASPubMed Google Scholar
Crocker, P. R. & Varki, A. Siglecs, sialic acids and innate immunity. Trends Immunol.22, 337–342 (2001). CASPubMed Google Scholar
Angata, T. & Varki, A. Chemical diversity in the sialic acids and related _α_-keto acids: an evolutionary perspective. Chem. Rev.102, 439–469 (2002). CASPubMed Google Scholar
Falco, M. et al. Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. J. Exp. Med.190, 793–802 (1999). CASPubMedPubMed Central Google Scholar
Nicoll, G. et al. Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes. J. Biol. Chem.274, 34089–34095 (1999). CASPubMed Google Scholar
Ito, A., Handa, K., Withers, D. A., Satoh, M. & Hakomori, S. Binding specificity of siglec7 to disialogangliosides of renal cell carcinoma: possible role of disialogangliosides in tumor progression. FEBS Lett.504, 82–86 (2001). CASPubMed Google Scholar
Yamaji, T., Teranishi, T., Alphey, M. S., Crocker, P. R. & Hashimoto, Y. A small region of the natural killer cell receptor, Siglec-7, is responsible for its preferred binding to _α_2,8-disialyl and branched α2,6-sialyl residues. A comparison with Siglec-9. J. Biol. Chem.277, 6324–6332 (2002). CASPubMed Google Scholar
Nicoll, G. et al. Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. Eur. J. Immunol.33, 1642–1648 (2003). This paper shows that GD3 expression by target cells inhibits NK cells through interaction with SIGLEC7. CASPubMed Google Scholar
Urmacher, C., Cordon-Cardo, C. & Houghton, A. N. Tissue distribution of GD3 ganglioside detected by mouse monoclonal antibody R24. Am. J. Dermatopathol.11, 577–581 (1989). CASPubMed Google Scholar
Kniep, B., Flegel, W. A., Northoff, H. & Rieber, E. P. CDw60 glycolipid antigens of human leukocytes: structural characterization and cellular distribution. Blood82, 1776–1786 (1993). CASPubMed Google Scholar
Ikehara, Y., Ikehara, S. K. & Paulson, J. C. Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9. J. Biol. Chem.279, 43117–43125 (2004). CASPubMed Google Scholar
Avril, T., Floyd, H., Lopez, F., Vivier, E. & Crocker, P. R. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by siglecs-7 and -9, CD33-related siglecs expressed on human monocytes and NK cells. J. Immunol.173, 6841–6849 (2004). CASPubMed Google Scholar
Zhang, J. Q., Nicoll, G., Jones, C. & Crocker, P. R. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J. Biol. Chem.275, 22121–22126 (2000). CASPubMed Google Scholar
Zhang, J. Q., Biedermann, B., Nitschke, L. & Crocker, P. R. The murine inhibitory receptor mSiglec-E is expressed broadly on cells of the innate immune system whereas mSiglec-F is restricted to eosinophils. Eur. J. Immunol.34, 1175–1184 (2004). CASPubMed Google Scholar
Ulyanova, T., Shah, D. D. & Thomas, M. L. Molecular cloning of MIS, a myeloid inhibitory siglec, that binds protein-tyrosine phosphatases SHP-1 and SHP-2. J. Biol. Chem.276, 14451–14458 (2001). CASPubMed Google Scholar
van den Berg, T. K., Yoder, J. A. & Litman, G. W. On the origins of adaptive immunity: innate immune receptors join the tale. Trends Immunol.25, 11–16 (2004). CASPubMed Google Scholar
Piccio, L. et al. Adhesion of human T cells to antigen-presenting cells through SIRPβ2–CD47 interaction costimulates T cell proliferation. Blood105, 2421–2427 (2005). CASPubMed Google Scholar
Brooke, G., Holbrook, J. D., Brown, M. H. & Barclay, A. N. Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family. J. Immunol.173, 2562–2570 (2004). CASPubMed Google Scholar
Oldenborg, P. -A. et al. Role of CD47 as a marker of self on red blood cells. Science288, 2051–2054 (2000). CASPubMed Google Scholar
Blazar, B. R. et al. CD47 (integrin-associated protein) engagement of dendritic cell and macrophage counterreceptors is required to prevent the clearance of donor lymphohematopoietic cells. J. Exp. Med.194, 541–550 (2001). CASPubMedPubMed Central Google Scholar
Katz, H. R. Inhibitory receptors and allergy. Curr. Opin. Immunol.14, 698–704 (2002). CASPubMed Google Scholar
Wang, L. L., Mehta, I. K., LeBlanc, P. A. & Yokoyama, W. M. Mouse natural killer cells express gp49B1, a structural homologue of human killer inhibitory receptors. J. Immunol.158, 13–17 (1997). CASPubMed Google Scholar
Wang, L. L., Chu, D. T., Dokun, A. O. & Yokoyama, W. M. Inducible expression of the gp49B inhibitory receptor on NK cells. J. Immunol.164, 5215–5220 (2000). CASPubMed Google Scholar
Castells, M. C. et al. gp49B1–αvβ3 interaction inhibits antigen-induced mast cell activation. Nature Immunol.2, 436–442 (2001). CAS Google Scholar
Wilder, R. L. Integrin αVβ3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann. Rheum. Dis.61, ii96–ii99 (2002). CASPubMedPubMed Central Google Scholar
Rojo, S. et al. Natural killer cells and mast cells from gp49B null mutant mice are functional. Mol. Cell. Biol.20, 7178–7182 (2000). CASPubMedPubMed Central Google Scholar
Gu, X. et al. The gp49B1 inhibitory receptor regulates the IFN-γ responses of T cells and NK cells. J. Immunol.170, 4095–4101 (2003). This study shows that, compared with cells from normal mice, gp49B1-deficient NK cells and T cells produce more IFN-γex vivo, followingin vivoviral infection. CASPubMed Google Scholar
Abramson, J., Xu, R. & Pecht, I. An unusual inhibitory receptor — the mast cell function-associated antigen (MAFA). Mol. Immunol.38, 1307–1313 (2002). CASPubMed Google Scholar
Robbins, S. H. et al. Inhibitory functions of the killer cell lectin-like receptor G1 molecule during the activation of mouse NK cells. J. Immunol.168, 2585–2589 (2002). CASPubMed Google Scholar
Corral, L., Hanke, T., Vance, R. E., Cado, D. & Raulet, D. H. NK cell expression of the killer cell lectin-like receptor G1 (KLRG1), the mouse homolog of MAFA, is modulated by MHC class I molecules. Eur. J. Immunol.30, 920–930 (2000). CASPubMed Google Scholar
Meyaard, L. et al. LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes. Immunity7, 283–290 (1997). CASPubMed Google Scholar
Thorley-Lawson, D. A., Schooley, R. T., Bhan, A. K. & Nadler, L. M. Epstein–Barr virus superinduces a new human B cell differentiation antigen (B-LAST 1) expressed on transformed lymphoblasts. Cell30, 415–425 (1982). CASPubMed Google Scholar
Biron, C. A., Byron, K. S. & Sullivan, J. L. Severe herpesvirus infections in an adolescent without natural killer cells. N. Engl. J. Med.320, 1731–1735 (1989). CASPubMed Google Scholar
Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. & Lanier, L. L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science296, 1323–1326 (2002). CASPubMed Google Scholar
Shchelkunov, S. N. et al. The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. Virology243, 432–460 (1998). CASPubMed Google Scholar
Wilcock, D., Duncan, S. A., Traktman, P., Zhang, W. H. & Smith, G. L. The vaccinia virus A4OR gene product is a nonstructural, type II membrane glycoprotein that is expressed at the cell surface. J. Gen. Virol.80, 2137–2148 (1999). CASPubMed Google Scholar
Cameron, C. et al. The complete DNA sequence of myxoma virus. Virology264, 298–318 (1999). CASPubMed Google Scholar
Neilan, J. G. et al. An African swine fever virus ORF with similarity to C-type lectins is non-essential for growth in swine macrophages in vitro and for virus virulence in domestic swine. J. Gen. Virol.80, 2693–2697 (1999). CASPubMed Google Scholar
Voigt, S., Sandford, G. R., Ding, L. & Burns, W. H. Identification and characterization of a spliced C-type lectin-like gene encoded by rat cytomegalovirus. J. Virol.75, 603–611 (2001). CASPubMedPubMed Central Google Scholar
Lindberg, F. P., Gresham, H. D., Schwarz, E. & Brown, E. J. Molecular cloning of integrin-associated protein: an immunoglobulin family member with multiple membrane-spanning domains implicated in αVβ3-dependent ligand binding. J. Cell Biol.123, 485–496 (1993). CASPubMed Google Scholar
Campbell, I. G., Freemont, P. S., Foulkes, W. & Trowsdale, J. An ovarian tumor marker with homology to vaccinia virus contains an IgV-like region and multiple transmembrane domains. Cancer Res.52, 5416–5420 (1992). CASPubMed Google Scholar
Tseng, C. T. & Klimpel, G. R. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J. Exp. Med.195, 43–49 (2002). CASPubMedPubMed Central Google Scholar
Crotta, S. et al. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J. Exp. Med.195, 35–41 (2002). CASPubMedPubMed Central Google Scholar
Razi, N. & Varki, A. Cryptic sialic acid binding lectins on human blood leukocytes can be unmasked by sialidase treatment or cellular activation. Glycobiology9, 1225–1234 (1999). CASPubMed Google Scholar
Razi, N. & Varki, A. Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes. Proc. Natl Acad. Sci. USA95, 7469–7474 (1998). CASPubMedPubMed Central Google Scholar
Boulton, I. C. & Gray-Owen, S. D. Neisserial binding to CEACAM1 arrests the activation and proliferation of CD4+ T lymphocytes. Nature Immunol.3, 229–236 (2002). This paper shows that the binding of bacteria to CEACAM1 at the surface of T cells inhibits T-cell functions. CAS Google Scholar
Dveksler, G. S. et al. Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59. J. Virol.67, 1–8 (1993). CASPubMedPubMed Central Google Scholar
Virji, M., Watt, S. M., Barker, S., Makepeace, K. & Doyonnas, R. The N-domain of the human CD66a adhesion molecule is a target for Opa proteins of Neisseria meningitidis and Neisseria gonorrhoeae. Mol. Microbiol.22, 929–939 (1996). CASPubMed Google Scholar
Leusch, H. G., Drzeniek, Z., Markos-Pusztai, Z. & Wagener, C. Binding of Escherichia coli and Salmonella strains to members of the carcinoembryonic antigen family: differential binding inhibition by aromatic α-glycosides of mannose. Infect. Immun.59, 2051–2057 (1991). CASPubMedPubMed Central Google Scholar
Hill, D. J. & Virji, M. A novel cell-binding mechanism of Moraxella catarrhalis ubiquitous surface protein UspA: specific targeting of the N-domain of carcinoembryonic antigen-related cell adhesion molecules by UspA1. Mol. Microbiol.48, 117–129 (2003). CASPubMed Google Scholar
Virji, M. et al. Carcinoembryonic antigens are targeted by diverse strains of typable and non-typable Haemophilus influenzae. Mol. Microbiol.36, 784–795 (2000). CASPubMed Google Scholar
Garrido, F. et al. Implications for immunosurveillance of altered HLA class I phenotypes in human tumours. Immunol. Today18, 89–95 (1997). CASPubMed Google Scholar
Demanet, C. et al. Down-regulation of HLA-A and HLA-Bw6, but not HLA-Bw4, allospecificities in leukemic cells: an escape mechanism from CTL and NK attack? Blood103, 3122–3130 (2004). CASPubMed Google Scholar
Saito, S. et al. Expression of globe-series gangliosides in human renal cell carcinoma. Jpn J. Cancer Res.88, 652–659 (1997). CASPubMedPubMed Central Google Scholar
Plunkett, T. A. & Ellis, P. A. CEACAM1: a marker with a difference or more of the same? J. Clin. Oncol.20, 4273–4275 (2002). PubMed Google Scholar
Thies, A. et al. CEACAM1 expression in cutaneous malignant melanoma predicts the development of metastatic disease. J. Clin. Oncol.20, 2530–2536 (2002). CASPubMed Google Scholar
Laack, E. et al. Expression of CEACAM1 in adenocarcinoma of the lung: a factor of independent prognostic significance. J. Clin. Oncol.20, 4279–4284 (2002). PubMed Google Scholar
Kammerer, R. et al. The tumour suppressor gene CEACAM1 is completely but reversibly downregulated in renal cell carcinoma. J. Pathol.204, 258–267 (2004). CASPubMed Google Scholar
Pende, D. et al. Analysis of the receptor–ligand interactions in the natural killer-mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the poliovirus receptor (CD155) and nectin-2 (CD112). Blood105, 2066–2073 (2005). CASPubMed Google Scholar
Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science295, 2097–2100 (2002). This study shows the clinical benefits of NK-cell alloreactivity. CASPubMed Google Scholar
Moffett-King, A. Natural killer cells and pregnancy. Nature Rev. Immunol.2, 656–663 (2002). CAS Google Scholar
Markel, G. et al. Pivotal role of CEACAM1 protein in the inhibition of activated decidual lymphocyte functions. J. Clin. Invest.110, 943–953 (2002). CASPubMedPubMed Central Google Scholar
Blazar, B. R. et al. A critical role for CD48 antigen in regulating alloengraftment and lymphohematopoietic recovery after bone marrow transplantation. Blood92, 4453–4463 (1998). CASPubMed Google Scholar
Vitale, C. et al. Analysis of the activating receptors and cytolytic function of human natural killer cells undergoing in vivo differentiation after allogeneic bone marrow transplantation. Eur. J. Immunol.34, 455–460 (2004). CASPubMed Google Scholar
Smith, G. M., Biggs, J., Norris, B., Anderson-Stewart, P. & Ward, R. Detection of a soluble form of the leukocyte surface antigen CD48 in plasma and its elevation in patients with lymphoid leukemias and arthritis. J. Clin. Immunol.17, 502–509 (1997). CASPubMed Google Scholar
Wandstrat, A. E. et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity21, 769–780 (2004). CASPubMed Google Scholar
Speckman, R. A. et al. Novel immunoglobulin superfamily gene cluster, mapping to a region of human chromosome 17q25, linked to psoriasis susceptibility. Hum. Genet.112, 34–41 (2003). CASPubMed Google Scholar
Cantoni, C. et al. Molecular and functional characterization of IRp60, a member of the immunoglobulin superfamily that functions as an inhibitory receptor in human NK cells. Eur. J. Immunol.29, 3148–3159 (1999). CASPubMed Google Scholar
Iijima, H. et al. Specific regulation of T helper cell 1-mediated murine colitis by CEACAM1. J. Exp. Med.199, 471–482 (2004). CASPubMedPubMed Central Google Scholar
Boulanger, L. M. & Shatz, C. J. Immune signalling in neural development, synaptic plasticity and disease. Nature Rev. Neurosci.5, 521–531 (2004). CAS Google Scholar
Malisan, F. & Testi, R. GD3 ganglioside and apoptosis. Biochim. Biophys. Acta1585, 179–187 (2002). CASPubMed Google Scholar
Backstrom, E., Chambers, B. J., Kristensson, K. & Ljunggren, H. G. Direct NK cell-mediated lysis of syngenic dorsal root ganglia neurons in vitro. J. Immunol.165, 4895–4900 (2000). CASPubMed Google Scholar