Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data (original) (raw)
Gurish, M. F. & Austen, K. F. The diverse roles of mast cells. J. Exp. Med.194, 1–5 (2001). Article Google Scholar
Bradding, P., Walls, A. F. & Holgate, S. T. The role of the mast cell in the pathophysiology of asthma. J. Allergy Clin. Immunol.117, 1277–1284 (2006). ArticleCASPubMed Google Scholar
Leung, D. Y., Boguniewicz, M., Howell, M. D., Nomura, I. & Hamid, Q. A. New insights into atopic dermatitis. J. Clin. Invest.113, 651–657 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bischoff, S. C. & Crowe, S. E. Gastrointestinal food allergy: new insights into pathophysiology and clinical perspectives. Gastroenterology128, 1089–1113 (2005). ArticleCASPubMed Google Scholar
Bischoff, S. C. in Mast cells and basophils (eds Marone, G., Lichtenstein, L. M. & Galli, S. J.) 541–565 (Academic Press, San Diego, 2000). Book Google Scholar
Vliagoftis, H. & Befus, A. D. Mast cells at mucosal frontiers. Curr. Mol. Med.5, 573–589 (2005). ArticleCASPubMed Google Scholar
Galli, S. J., Nakae, S. & Tsai, M. Mast cells in the development of adaptive immune responses. Nature Immunol.6, 135–142 (2005). ArticleCAS Google Scholar
Lu, L. F. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature442, 997–1002 (2006). This study establishes for the first time that mast cells are essential in CD4+CD25+FOXP3+ regulatory T-cell-dependent peripheral tolerance in mice, and that IL-9 is the functional link by which activated T cells recruit and activate mast cells to mediate regional immune suppression. ArticleCASPubMed Google Scholar
Lee, D. M. et al. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science297, 1689–1692 (2002). ArticleCASPubMed Google Scholar
Theoharides, T. C. & Cochrane, D. E. Critical role of mast cells in inflammatory diseases and the effect of acute stress. J. Neuroimmunol.146, 1–12 (2004). ArticleCAS Google Scholar
Barbara, G. et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology126, 693–702 (2004). This paper shows for the first time that human mast cells form functional synapses with nerve endingsin vivoand that such synapses mediate pain, which is one of the main symptoms of irritable bowel syndrome, to the central nervous system. ArticlePubMed Google Scholar
Marshall, J. S. Mast cell responses to pathogens. Nature Rev. Immunol.4, 787–799 (2004). ArticleCAS Google Scholar
Malaviya, R. & Georges, A. Regulation of mast cell-mediated innate immunity during early response to bacterial infection. Clin. Rev. Allergy Immunol.22, 189–204 (2002). ArticleCASPubMed Google Scholar
Maurer, M. et al. What is the physiological function of mast cells? Exp. Dermatol.12, 886–910 (2003). ArticleCASPubMed Google Scholar
Maurer, M. et al. Mast cells promote homeostasis by limiting endothelin-1-induced toxicity. Nature432, 512–516 (2004). This study, although carried out in the murine system, further establishes mast cells as part of the innate immune defence mechanisms that can be activated not only by microorganisms but also by endogenous factors such as endothelin. ArticleCASPubMed Google Scholar
Garfield, R. E., Irani, A. M., Schwartz, L. B., Bytautiene, E. & Romero, R. Structural and functional comparison of mast cells in the pregnant versus nonpregnant human uterus. Am. J. Obstet. Gynecol.194, 261–267 (2006). ArticleCASPubMed Google Scholar
Cooper, P. H. & Stanworth, D. R. Isolation of rat peritoneal mast cells in high yield and purity. Methods Cell. Biol.14, 365–378 (1976). ArticleCASPubMed Google Scholar
Enerback, L. & Wingren, U. Histamine content of peritoneal and tissue mast cells of growing rats. Histochemistry66, 113–124 (1980). ArticleCASPubMed Google Scholar
Bischoff, S. C. et al. Quantitative assessment of intestinal eosinophils and mast cells in inflammatory bowel disease. Histopathology28, 1–13 (1996). ArticleCASPubMed Google Scholar
Abonia, J. P. et al. Constitutive homing of mast cell progenitors to the intestine depends on autologous expression of the chemokine receptor CXCR2. Blood105, 4308–4313 (2005). ArticleCASPubMedPubMed Central Google Scholar
Schernthaner, G. H. et al. Detection of differentiation- and activation-linked cell surface antigens on cultured mast cell progenitors. Allergy60, 1248–1255 (2005). ArticleCASPubMed Google Scholar
Dahl, C., Hoffmann, H. J., Saito, H. & Schiotz, P. O. Human mast cells express receptors for IL-3, IL-5 and GM-CSF; a partial map of receptors on human mast cells cultured in vitro. Allergy59, 1087–1096 (2004). ArticleCASPubMed Google Scholar
Rennick, D., Hunte, B., Holland, G. & Thompson-Snipes, L. Cofactors are essential for stem cell factor-dependent growth and maturation of mast cell progenitors: comparative effects of interleukin-3 (IL-3), IL-4, IL-10, and fibroblasts. Blood85, 57–65 (1995). CASPubMed Google Scholar
Thienemann, F., Henz, B. M. & Babina, M. Regulation of mast cell characteristics by cytokines: divergent effects of interleukin-4 on immature mast cell lines versus mature human skin mast cells. Arch. Dermatol. Res.296, 134–138 (2004). ArticleCASPubMed Google Scholar
Bischoff, S. C., Sellge, G., Schwengberg, S., Lorentz, A. & Manns, M. P. Stem cell factor-dependent survival, proliferation and enhanced releasability of purified mature mast cells isolated from human intestinal tissue. Int. Arch. Allergy Immunol.118, 104–107 (1999). ArticleCASPubMed Google Scholar
Sellge, G. & Bischoff, S. C. Isolation, culture, and characterization of intestinal mast cells. Methods Mol. Biol.315, 123–138 (2006). This paper summarizes our current knowledge of basic techniques for the isolation of human mast cells from mucosal tissues. PubMed Google Scholar
MacDonald, A. J. et al. Rat bone marrow-derived mast cells co-cultured with 3T3 fibroblasts in the absence of T-cell derived cytokines require stem cell factor for their survival and maintain their mucosal mast cell-like phenotype. Immunology88, 375–383 (1996). ArticleCASPubMedPubMed Central Google Scholar
Galli, S. J. et al. Mast cells as 'tunable' effector and immunoregulatory cells: recent advances. Annu. Rev. Immunol.23, 749–786 (2005). ArticleCASPubMed Google Scholar
Kirshenbaum, A. S. et al. Characterization of novel stem cell factor responsive human mast cell lines LAD 1 and 2 established from a patient with mast cell sarcoma/leukemia; activation following aggregation of FcεRI or FcγRI. Leuk. Res.27, 677–682 (2003). ArticleCASPubMed Google Scholar
Kirshenbaum, A. S., Kessler, S. W., Goff, J. P. & Metcalfe, D. D. Demonstration of the origin of human mast cells from CD34+ bone marrow progenitor cells. J. Immunol.146, 1410–1415 (1991). CASPubMed Google Scholar
Mitsui, H. et al. Development of human mast cells from umbilical cord blood cells by recombinant human and murine c-kit ligand. Proc. Natl Acad. Sci. USA90, 735–739 (1993). This paper established SCF as the most relevant human mast-cell growth factor. ArticleCASPubMed Google Scholar
Toru, H. et al. Interleukin-4 promotes the development of tryptase and chymase double-positive human mast cells accompanied by cell maturation. Blood91, 187–195 (1998). CASPubMed Google Scholar
Denburg, J. A. Basophil and mast cell lineages in vitro and in vivo. Blood79, 846–860 (1992). CASPubMed Google Scholar
Agis, H. et al. Comparative immunophenotypic analysis of human mast cells, blood basophils and monocytes. Immunology87, 535–543 (1996). ArticleCASPubMedPubMed Central Google Scholar
Nakajima, T. et al. Gene expression screening of human mast cells and eosinophils using high-density oligonucleotide probe arrays: abundant expression of major basic protein in mast cells. Blood98, 1127–1134 (2001). ArticleCASPubMed Google Scholar
Foster, B., Schwartz, L. B., Devouassoux, G., Metcalfe, D. D. & Prussin, C. Characterization of mast cell tryptase-expressing peripheral blood cells as basophils. J. Allergy Clin. Immunol.109, 287–293 (2002). ArticleCASPubMed Google Scholar
Huang, R. et al. Expression of a mast cell tryptase in the human monocytic cell lines U-937 and Mono Mac 6. Scand. J. Immunol.38, 359–367 (1993). ArticleCASPubMed Google Scholar
Ito, T. et al. Mast cells acquire monocyte-specific gene expression and monocyte-like morphology by overproduction of PU.1. J. Immunol.174, 376–383 (2005). ArticleCASPubMed Google Scholar
Kempuraj, D. et al. Characterization of mast cell-committed progenitors present in human umbilical cord blood. Blood93, 3338–3346 (1999). CASPubMed Google Scholar
Kocabas, C. N., Yavuz, A. S., Lipsky, P. E., Metcalfe, D. D. & Akin, C. Analysis of the lineage relationship between mast cells and basophils using the c-kit D816V mutation as a biologic signature. J. Allergy Clin. Immunol.115, 1155–1161 (2005). ArticleCASPubMed Google Scholar
Razin, E. et al. Interleukin 3: A differentiation and growth factor for the mouse mast cell that contains chondroitin sulfate E proteoglycan. J. Immunol.132, 1479–1486 (1984). CASPubMed Google Scholar
Valent, P. et al. Failure to detect IL-3-binding sites on human mast cells. J. Immunol.145, 3432–3437 (1990). CASPubMed Google Scholar
Gebhardt, T. et al. Cultured human intestinal mast cells express functional IL-3 receptors and respond to IL-3 by enhancing growth and IgE receptor-dependent mediator release. Eur. J. Immunol.32, 2308–2316 (2002). ArticleCASPubMed Google Scholar
Kurimoto, Y., De Weck, A. L. & Dahinden, C. A. The effect of interleukin 3 upon IgE-dependent and IgE-independent basophil degranulation and leukotriene generation. Eur. J. Immunol.21, 361–368 (1991). ArticleCASPubMed Google Scholar
Boyce, J. A. Eicosanoid mediators of mast cells: receptors, regulation of synthesis, and pathobiologic implications. Chem. Immunol. Allergy87, 59–79 (2005). ArticleCASPubMed Google Scholar
Weller, C. L. et al. Leukotriene B4, an activation product of mast cells, is a chemoattractant for their progenitors. J. Exp. Med.201, 1961–1971 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lorentz, A., Schwengberg, S., Mierke, C., Manns, M. P. & Bischoff, S. C. Human intestinal mast cells produce IL-5 in vitro upon IgE receptor cross-linking and in vivo in the course of intestinal inflammatory disease. Eur. J. Immunol.29, 1496–1503 (1999). ArticleCASPubMed Google Scholar
Lorentz, A., Schwengberg, S., Sellge, G., Manns, M. P. & Bischoff, S. C. Human intestinal mast cells are capable of producing different cytokine profiles: role of IgE receptor cross-linking and IL-4. J. Immunol.164, 43–48 (2000). ArticleCASPubMed Google Scholar
Schechter, N. M., Pereira, P. J. B. & Strobl, S. in Mast Cells and Basophils (eds Marone, G., Lichtenstein, L.M. Galli, S.J.) 275–290 (Academic Press, San Diego, 2000). Book Google Scholar
Hallgren, J. & Pejler, G. Biology of mast cell tryptase. An inflammatory mediator. FEBS J.273, 1871–1895 (2006). ArticleCASPubMed Google Scholar
Miller, H. R. & Pemberton, A. D. Tissue-specific expression of mast cell granule serine proteinases and their role in inflammation in the lung and gut. Immunology105, 375–390 (2002). ArticleCASPubMedPubMed Central Google Scholar
Bischoff, S. C. et al. IL-4 enhances proliferation and mediator release in mature human mast cells. Proc. Natl Acad. Sci. USA96, 8080–8085 (1999). This paper showed for the first time that IL-4 is an important regulator of human mast-cell functions, which has implications for allergy and other TH2-skewed diseases. ArticleCASPubMed Google Scholar
Mierke, C. T. et al. Human endothelial cells regulate survival and proliferation of human mast cells. J. Exp. Med.192, 801–811 (2000). ArticleCASPubMedPubMed Central Google Scholar
Nakajima, T. et al. Marked increase in CC chemokine gene expression in both human and mouse mast cell transcriptomes following Fcε receptor I cross-linking: an interspecies comparison. Blood100, 3861–3868 (2002). References 35 and 54 are a unique and valuable source of information about differences in gene expression between human and murine mast cells, as well as between human mast cells and eosinophils or basophils. ArticleCASPubMed Google Scholar
Gelfand, E. W. Pro: mice are a good model of human airway disease. Am. J. Respir. Crit. Care Med.166, 5–6 (2002). ArticlePubMed Google Scholar
Persson, C. G. Con: mice are not a good model of human airway disease. Am. J. Respir. Crit. Care Med.166, 6–7 (2002). ArticlePubMed Google Scholar
Hamelmann, E. et al. Antiinterleukin-5 antibody prevents airway hyperresponsiveness in a murine model of airway sensitization. Am. J. Respir. Crit. Care Med.155, 819–825 (1997). ArticleCASPubMed Google Scholar
Leckie, M. J. et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet356, 2144–2148 (2000). ArticleCASPubMed Google Scholar
Saito, H. Mast cell-specific genes — new drug targets/pathogenesis. Chem. Immunol. Allergy87, 198–212 (2005). ArticleCASPubMed Google Scholar
Kitamura, Y., Kasugai, T., Arizono, N. & Matsuda, H. Development of mast cells and basophils: processes and regulation mechanisms. Am. J. Med. Sci.306, 185–191 (1993). ArticleCASPubMed Google Scholar
Bischoff, S. C., de Weck, A. L. & Dahinden, C. A. Interleukin 3 and granulocyte/macrophage-colony-stimulating factor render human basophils responsive to low concentrations of complement component C3a. Proc. Natl Acad. Sci. USA87, 6813–6817 (1990). ArticleCASPubMed Google Scholar
Seder, R. A. et al. Production of interleukin-4 and other cytokines following stimulation of mast cell lines and in vivo mast cells/basophils. Int. Arch. Allergy Appl. Immunol.94, 137–140 (1991). ArticleCASPubMed Google Scholar
Brunner, T., Heusser, C. H. & Dahinden, C. A. Human peripheral blood basophils primed by interleukin 3 (IL-3) produce IL-4 in response to immunoglobulin E receptor stimulation. J. Exp. Med.177, 605–611 (1993). ArticleCASPubMed Google Scholar
Min, B. et al. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J. Exp. Med.200, 507–517 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bradding, P. et al. Immunolocalization of cytokines in the nasal mucosa of normal and perennial rhinitic subjects. The mast cell as a source of IL-4, IL-5, and IL-6 in human allergic mucosal inflammation. J. Immunol.151, 3853–3865 (1993). CASPubMed Google Scholar
Bischoff, S. C. et al. Mast cells are an important cellular source of tumour necrosis factor α in human intestinal tissue. Gut44, 643–652 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nakae, S. et al. Mast cells enhance T cell activation: Importance of mast cell-derived TNF. Proc. Natl Acad. Sci. USA102, 6467–6472 (2005). ArticleCASPubMed Google Scholar
Kinet, J. P. The high-affinity IgE receptor (FcεRI): From physiology to pathology. Annu. Rev. Immunol.17, 931–972 (1999). ArticleCASPubMed Google Scholar
Rivera, J. & Gilfillan, A. M. Molecular regulation of mast cell activation. J. Allergy Clin. Immunol.117, 1214–1225 (2006). ArticleCASPubMed Google Scholar
Gilfillan, A. M. & Tkaczyk, C. Integrated signalling pathways for mast cell activation. Nature Rev. Immunol.6, 218–230 (2006). ArticleCAS Google Scholar
Lorentz, A., Klopp, I., Gebhardt, T., Manns, M. P. & Bischoff, S. C. Role of activator protein-1, nuclear factor-κB and nuclear factor of activated T-cells in IgE receptor-mediated cytokine expression in mature human mast cells. J. Allergy Clin. Immunol.111, 1062–1068 (2003). ArticleCASPubMed Google Scholar
Kawakami, T. & Galli, S. J. Regulation of mast cell and basophil function and survival by IgE. Nature Rev. Immunol.2, 773–786 (2002). ArticleCAS Google Scholar
Kalesnikoff, J. et al. Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity14, 801–811 (2001). This paper shows for the first time that mast cells can be activated by soluble monomeric IgE in the absence of antigen. This finding has implications for understanding the mechanisms of allergen-independent mast-cell activation and perpetuation of allergic symptoms in the absence of allergen. ArticleCASPubMed Google Scholar
Matsuda, K. et al. Monomeric IgE enhances human mast cell chemokine production: IL-4 augments and dexamethasone suppresses the response. J. Allergy Clin. Immunol.116, 1357–1363 (2005). ArticleCASPubMed Google Scholar
Cruse, G. et al. Activation of human lung mast cells by monomeric immunoglobulin E. Eur. Respir. J.25, 858–863 (2005). ArticleCASPubMed Google Scholar
Redegeld, F. A. et al. Immunoglobulin-free light chains elicit immediate hypersensitivity-like responses. Nature Med.8, 694–701 (2002). ArticleCASPubMed Google Scholar
Kraneveld, A. D. et al. Elicitation of allergic asthma by immunoglobulin free light chains. Proc. Natl Acad. Sci. USA102, 1578–1583 (2005). ArticleCASPubMed Google Scholar
Lorentz, A., Schuppan, D., Gebert, A., Manns, M. P. & Bischoff, S. C. Regulatory effects of stem cell factor and interleukin-4 on adhesion of human mast cells to extracellular matrix proteins. Blood99, 966–972 (2002). ArticleCASPubMed Google Scholar
Bischoff, S. C & Dahinden, C. A. c-kit ligand: a unique potentiator of mediator release by human lung mast cells. J. Exp. Med.175, 237–244 (1992). In this paper, the multiple regulatory functions of SCF in fully mature human tissue mast cells are identified. ArticleCASPubMed Google Scholar
Undem, B. J., Lichtenstein, L. M., Hubbard, W. C., Meeker, S. & Ellis, J. L. Recombinant stem cell factor-induced mast cell activation and smooth muscle contraction in human bronchi. Am. J. Respir. Cell. Mol. Biol.11, 646–650 (1994). ArticleCASPubMed Google Scholar
Kulka, M. & Metcalfe, D. D. High-resolution tracking of cell division demonstrates differential effects of TH1 and TH2 cytokines on SCF-dependent human mast cell production in vitro: correlation with apoptosis and Kit expression. Blood105, 592–599 (2005). ArticleCASPubMed Google Scholar
Lorentz, A. et al. IL-4-induced priming of human intestinal mast cells for enhanced survival and TH2 cytokine generation is reversible and associated with increased activity of ERK1/2 and c-Fos. J. Immunol.174, 6751–6756 (2005). ArticleCASPubMed Google Scholar
Okayama, Y., Hagaman, D. D. & Metcalfe, D. D. A comparison of mediators released or generated by IFN-γ-treated human mast cells following aggregation of FcγRI or FcεRI. J. Immunol.166, 4705–4712 (2001). ArticleCASPubMed Google Scholar
el-Lati, S. G., Dahinden, C. A & Church, M. K. Complement peptides C3a- and C5a-induced mediator release from dissociated human skin mast cells. J. Invest. Dermatol.102, 803–806 (1994). ArticleCAS Google Scholar
Guhl, S., Lee, H. H., Babina, M., Henz, B. M. & Zuberbier, T. Evidence for a restricted rather than generalized stimulatory response of skin-derived human mast cells to substance P. J. Neuroimmunol.163, 92–101 (2005). ArticleCASPubMed Google Scholar
Bischoff, S. C. et al. Substance P and other neuropeptides do not induce mediator release in isolated human intestinal mast cells. Neurogastroenterol. Motil.16, 185–193 (2004). ArticleCASPubMed Google Scholar
van der Kleij, H. P. et al. Functional expression of neurokinin 1 receptors on mast cells induced by IL-4 and stem cell factor. J. Immunol.171, 2074–2079 (2003). ArticleCASPubMed Google Scholar
Miyazaki, D. et al. Macrophage inflammatory protein-1α as a costimulatory signal for mast cell-mediated immediate hypersensitivity reactions. J. Clin. Invest.115, 434–442 (2005). ArticleCASPubMedPubMed Central Google Scholar
Varadaradjalou, S, et al. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells. Eur. J. Immunol.33, 899–906 (2003). ArticleCASPubMed Google Scholar
Iida, M. et al. Selective down-regulation of high-affinity IgE receptor (FcεRI) α-chain messenger RNA among transcriptome in cord blood-derived versus adult peripheral blood-derived cultured human mast cells. Blood97, 1016–1022 (2001). ArticleCASPubMed Google Scholar
Inomata, N., Tomita, H., Ikezawa, Z. & Saito, H. Differential gene expression profile between cord blood progenitor-derived and adult progenitor-derived human mast cells. Immunol. Lett.98, 265–271 (2005). ArticleCASPubMed Google Scholar
Malbec, O., Attal, J. P., Fridman, W. H. & Daeron, M. Negative regulation of mast cell proliferation by FcγRIIB. Mol. Immunol.38, 1295–1299 (2002). ArticleCASPubMed Google Scholar
Abramson, J., Xu, R. & Pecht, I. An unusual inhibitory receptor–the mast cell function-associated antigen (MAFA). Mol. Immunol.38, 1307–1313 (2002). ArticleCASPubMed Google Scholar
Luskova, P. & Draber, P. Modulation of the Fcε receptor I signaling by tyrosine kinase inhibitors: search for therapeutic targets of inflammatory and allergy diseases. Curr. Pharm. Des.10, 1727–1737 (2004). ArticleCASPubMed Google Scholar
Bachelet, I., Munitz, A., Moretta, A., Moretta, L. & Levi-Schaffer, F. The inhibitory receptor IRp60 (CD300a) is expressed and functional on human mast cells. J. Immunol.175, 7989–7995 (2005). ArticleCASPubMed Google Scholar
Sloane, D. E. et al. Leukocyte immunoglobulin-like receptors: novel innate receptors for human basophil activation and inhibition. Blood104, 2832–2839 (2004). ArticleCASPubMed Google Scholar
Brown, D., Trowsdale, J. & Allen, R. The LILR family: modulators of innate and adaptive immune pathways in health and disease. Tissue Antigens64, 215–225 (2004). ArticleCASPubMed Google Scholar
Gebhardt, T. et al. Growth, phenotype, and function of human intestinal mast cells are tightly regulated by transforming growth factor β1. Gut54, 928–934 (2005). ArticleCASPubMedPubMed Central Google Scholar
Royer, B. et al. Inhibition of IgE-induced activation of human mast cells by IL-10. Clin. Exp. Allergy31, 694–704 (2001). ArticleCASPubMed Google Scholar
Cherwinski, H. M. et al. The CD200 receptor is a novel and potent regulator of murine and human mast cell function. J. Immunol.174, 1348–1356 (2005). ArticleCASPubMed Google Scholar
Zhang, S., Cherwinski, H., Sedgwick, J. D. & Phillips, J. H. Molecular mechanisms of CD200 inhibition of mast cell activation. J. Immunol.173, 6786–6793 (2004). ArticleCASPubMed Google Scholar
Zhu, M., Liu, Y., Koonpaew, S., Granillo, O. & Zhang, W. Positive and negative regulation of FcεRI-mediated signaling by the adaptor protein LAB/NTAL. J. Exp. Med.200, 991–1000 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tam, S. Y. et al. RabGEF1 is a negative regulator of mast cell activation and skin inflammation. Nature Immunol.5, 844–852 (2004). ArticleCAS Google Scholar
Hjertson, M. et al. Retinoic acid inhibits in vitro development of mast cells but has no marked effect on mature human skin tryptase- and chymase-positive mast cells. J. Invest. Dermatol.120, 239–245 (2003). ArticleCASPubMed Google Scholar
Ishida, S., Kinoshitam, T., Sugawaram, N., Yamashita, T. & Koike, K. Serum inhibitors for human mast cell growth: possible role of retinol. Allergy58, 1044–1052 (2003). ArticleCASPubMed Google Scholar
Gebhardt, T. et al. β2-Adrenoceptor-mediated suppression of human intestinal mast cell functions is caused by disruption of filamentous actin dynamics. Eur. J. Immunol.35, 1124–1132 (2005). ArticleCASPubMed Google Scholar
Kraft, S. et al. Anti-CD63 antibodies suppress IgE-dependent allergic reactions in vitro and in vivo. J. Exp. Med.201, 385–396 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zhu, D. et al. A chimeric human-cat fusion protein blocks cat-induced allergy. Nature Med.11, 446–449 (2005). This paper shows for the first time that novel mechanisms of mast-cell inhibition developedin vitroare applicablein vivoand offer new strategies for the treatment of allergic diseases. ArticleCASPubMed Google Scholar
Berlin, A. A. & Lukacs, N. W. Treatment of cockroach allergen asthma model with imatinib attenuates airway responses. Am. J. Respir. Crit. Care Med.171, 35–39 (2005). ArticlePubMed Google Scholar
Dietz, A. B. et al. Imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo. Blood104, 1094–1099 (2004). ArticleCASPubMed Google Scholar
Norris, A. A. Pharmacology of sodium cromoglycate. Clin. Exp. Allergy26 (Suppl. 4), 5–7 (1996). ArticleCASPubMed Google Scholar
Edwards, A. M. Oral sodium cromoglycate: its use in the management of food allergy. Clin. Exp. Allergy25 (Suppl. 1), 31–33 (1995). ArticlePubMed Google Scholar
Cole, Z. A., Clough, G. F. & Church, M. K. Inhibition by glucocorticoids of the mast cell-dependent weal and flare response in human skin in vivo. Br. J. Pharmacol.132, 286–292 (2001). ArticleCASPubMedPubMed Central Google Scholar
Marone, G., Triggiani, M., Genovese, A. & Paulis, A. D. Role of human mast cells and basophils in bronchial asthma. Adv. Immunol.88, 97–160 (2005). ArticleCASPubMed Google Scholar
Wood, J. D. Enteric neuroimmunophysiology and pathophysiology. Gastroenterology127, 635–657 (2004). ArticleCASPubMed Google Scholar
Krishna, M. T. et al. Inhibition of mast cell tryptase by inhaled APC 366 attenuates allergen-induced late-phase airway obstruction in asthma. J. Allergy Clin. Immunol.107, 1039–1045 (2001). ArticleCASPubMed Google Scholar
Furuta, G. T. et al. Mast cell-dependent tumor necrosis factor α production participates in allergic gastric inflammation in mice. Gastroenterology113, 1560–1569 (1997). ArticleCASPubMed Google Scholar
Biedermann, T. et al. Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J. Exp. Med.192, 1441–1452 (2000). ArticleCASPubMedPubMed Central Google Scholar
Malaviya, R., Navara, C. & Uckun, F. M. Role of Janus kinase 3 in mast cell-mediated innate immunity against gram-negative bacteria. Immunity15, 313–321 (2001). ArticleCASPubMed Google Scholar
Brightling, C. E. et al. Mast cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med.346, 1699–1705 (2002). This paper establishes mast cells as crucial cells involved not only in mucosal-tissue responses, but also in smooth-muscle responses in human asthmatic individuals. ArticlePubMed Google Scholar
Oguma, T. et al. Role of prostanoid DP receptor variants in susceptibility to asthma. N. Engl. J. Med.351, 1752–1763 (2004). ArticleCASPubMed Google Scholar
Luster, A. D. & Tager, A. M. T-cell trafficking in asthma: lipid mediators grease the way. Nature Rev. Immunol.4, 711–724 (2004). ArticleCAS Google Scholar
Kashiwakura, J., Yokoi, H., Saito, H. & Okayama, Y. T cell proliferation by direct cross-talk between OX40 ligand on human mast cells and OX40 on human T cells: comparison of gene expression profiles between human tonsillar and lung-cultured mast cells. J. Immunol.173, 5247–5257 (2004). ArticleCASPubMed Google Scholar
Mukai, K. et al. Basophils play a critical role in the development of IgE-mediated chronic allergic inflammation independently of T cells and mast cells. Immunity23, 191–202 (2005). This paper defines and separates the functions of mast cells and basophilsin vivoin the pathogenesis of allergic inflammation. ArticleCASPubMed Google Scholar
Al-Muhsen, S. Z., Shablovsky, G., Olivenstein, R., Mazer, B. & Hamid, Q. The expression of stem cell factor and c-kit receptor in human asthmatic airways. Clin. Exp. Allergy34, 911–916 (2004). ArticleCASPubMed Google Scholar
Macdonald, T. T. & Monteleone, G. Immunity, inflammation, and allergy in the gut. Science307, 1920–1925 (2005). ArticleCASPubMed Google Scholar
Moriarty, D., Goldhill, J., Selve, N., O'Donoghue, D. P. & Baird, A. W. Human colonic anti-secretory activity of the potent NK(1) antagonist, SR140333: assessment of potential anti-diarrhoeal activity in food allergy and inflammatory bowel disease. Br. J. Pharmacol.133, 1346–1354 (2001). ArticleCASPubMedPubMed Central Google Scholar
Finkelman, F. D. et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol. Rev.201, 139–155 (2004). ArticleCASPubMed Google Scholar
Schramm, G. et al. Molecular characterization of an interleukin-4-inducing factor from Schistosoma mansoni eggs. J. Biol. Chem.278, 18384–18392 (2003). ArticleCASPubMed Google Scholar
Helmby, H. & Grencis, R. K. IL-18 regulates intestinal mastocytosis and Th2 cytokine production independently of IFN-γ during Trichinella spiralis infection. J. Immunol.169, 2553–2560 (2002). ArticleCASPubMed Google Scholar
Orinska, Z. et al. TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment. Blood106, 978–987 (2005). ArticleCASPubMed Google Scholar
Kulka, M., Alexopoulou, L., Flavell, R. A. & Metcalfe, D. D. Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J. Allergy Clin. Immunol.114, 174–182 (2004). ArticleCASPubMed Google Scholar
Woolley, D. E. The mast cell in inflammatory arthritis. N. Engl. J. Med.348, 1709–1711 (2003). ArticleCASPubMed Google Scholar
Valent, P. et al. New aspects in thrombosis research: possible role of mast cells as profibrinolytic and antithrombotic cells. Thromb. Haemost.87, 786–790 (2002). ArticleCASPubMed Google Scholar
Lindstedt, K. A. & Kovanen, P. T. Mast cells in vulnerable coronary plaques: potential mechanisms linking mast cell activation to plaque erosion and rupture. Curr. Opin. Lipidol.15, 567–573 (2004). ArticleCASPubMed Google Scholar
Silver, R. B. et al. Mast cells: a unique source of renin. Proc. Natl Acad. Sci. USA101, 13607–13612 (2004). ArticleCASPubMed Google Scholar
Zappulla, J. P., Arock, M., Mars, L. T. & Liblau, R. S. Mast cells: new targets for multiple sclerosis therapy? J. Neuroimmunol.131, 5–20 (2002). ArticleCASPubMed Google Scholar
Theoharides, T. C., Donelan, J., Kandere-Grzybowska, K. & Konstantinidou, A. The role of mast cells in migraine pathophysiology. Brain Res. Rev.49, 65–76 (2005). ArticleCASPubMed Google Scholar
Kashtan, N. & Alon, U. Spontaneous evolution of modularity and network motifs. Proc. Natl Acad. Sci. USA.102, 13773–13778 (2005). ArticleCASPubMed Google Scholar
Theoharides, T. C. & Bielory, L. mast cells and mast cell mediators as targets of dietary supplements. Ann. Allergy Asthma Immunol.93, S24–S34 (2004). ArticleCASPubMed Google Scholar