Loftus, E. V. Jr Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology126, 1504–1517 (2004). ArticlePubMed Google Scholar
Xavier, R. J. & Podolsky, D. K. Unravelling the pathogenesis of inflammatory bowel disease. Nature448, 427–434 (2007). ArticleCASPubMed Google Scholar
Elson, C. O. et al. Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol. Rev.206, 260–276 (2005). ArticlePubMed Google Scholar
Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature449, 851–861 (2007). Data from the HapMap project provided the basis for the advent of GWA studies. ArticleCASPubMed Google Scholar
Wang, W. Y., Barratt, B. J., Clayton, D. G. & Todd, J. A. Genome-wide association studies: theoretical and practical concerns. Nature Rev. Genet.6, 109–118 (2005). ArticleCASPubMed Google Scholar
Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet.6, 95–108 (2005). ArticleCASPubMed Google Scholar
Cho, J. H. & Weaver, C. T. The genetics of inflammatory bowel disease. Gastroenterology133, 1327–1339 (2007). ArticleCASPubMed Google Scholar
Binder, V. Genetic epidemiology in inflammatory bowel disease. Digest. Dis.16, 351–355 (1998). ArticleCAS Google Scholar
Fisher, S. A. et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease. Nature Genet. 27 April 2008 (doi:10.1038/ng.145). ArticleCASPubMedPubMed Central Google Scholar
Franke, A. et al. Replication of signals from recent studies of Crohn's disease identifies previously unknown disease loci for ulcerative colitis. Nature Genet. 27 April 2008 (doi:10.1038/ng.148). Together with reference 10, this study identifies an overlap between susceptibility loci in Crohn's disease and ulcerative colitis. ArticleCASPubMed Google Scholar
The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature447, 661–678 (2007). A landmark article defining the GWAs for seven common diseases, including Crohn's disease.
Tarlinton, D., Light, A., Metcalf, D., Harvey, R. P. & Robb, L. Architectural defects in the spleens of Nkx2-3-deficient mice are intrinsic and associated with defects in both B cell maturation and T cell-dependent immune responses. J. Immunol.170, 4002–4010 (2003). ArticleCASPubMed Google Scholar
Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature411, 599–603 (2001). ArticleCASPubMed Google Scholar
Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature411, 603–606 (2001). ArticleCASPubMed Google Scholar
Girardin, S. E. et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J. Biol. Chem.278, 41702–41708 (2003). ArticleCASPubMed Google Scholar
Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem.278, 5509–5512 (2003). ArticleCASPubMed Google Scholar
Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science307, 731–734 (2005). ArticleCASPubMed Google Scholar
Croucher, P. J. et al. Haplotype structure and association to Crohn's disease of CARD15 mutations in two ethnically divergent populations. Eur. J. Hum. Genet.11, 6–16 (2003). ArticleCASPubMed Google Scholar
Leong, R. W. et al. NOD2/CARD15 gene polymorphisms and Crohn's disease in the Chinese population. Aliment Pharmacol. Ther.17, 1465–1470 (2003). ArticleCASPubMed Google Scholar
Yamazaki, K., Takazoe, M., Tanaka, T., Kazumori, T. & Nakamura, Y. Absence of mutation in the NOD2/CARD15 gene among 483 Japanese patients with Crohn's disease. J. Hum. Genet.47, 469–472 (2002). ArticleCASPubMed Google Scholar
Kugathasan, S. et al. Comparative phenotypic and CARD15 mutational analysis among African American, Hispanic, and White children with Crohn's disease. Inflamm. Bowel Dis.11, 631–638 (2005). ArticlePubMed Google Scholar
Economou, M., Trikalinos, T. A., Loizou, K. T., Tsianos, E. V. & Ioannidis, J. P. Differential effects of NOD2 variants on Crohn's disease risk and phenotype in diverse populations: a metaanalysis. Am. J. Gastroenterol.99, 2393–2404 (2004). ArticleCASPubMed Google Scholar
Abraham, C. & Cho, J. H. Functional consequences of NOD2 (CARD15) mutations. Inflamm. Bowel Dis.12, 641–650 (2006). ArticlePubMed Google Scholar
Hugot, J. P. et al. Prevalence of CARD15/NOD2 mutations in caucasian healthy people. Am. J. Gastroenterol.102, 1259–1267 (2007). ArticleCASPubMed Google Scholar
Pauleau, A. L. & Murray, P. J. Role of nod2 in the response of macrophages to Toll-like receptor agonists. Mol. Cell Biol.23, 7531–7539 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hedl, M., Li, J., Cho, J. H. & Abraham, C. Chronic stimulation of Nod2 mediates tolerance to bacterial products. Proc. Natl Acad. Sci. USA104, 19440–19445 (2007). ArticleCASPubMedPubMed Central Google Scholar
Watanabe, T. et al. Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis. J. Clin. Invest.118, 545–559 (2008). CASPubMedPubMed Central Google Scholar
Hisamatsu, T. et al. CARD15/NOD2 functions as an anti-bacterial factor in human intestinal epithelial cells. Gastroenterology124, 993–1000 (2003). ArticleCASPubMed Google Scholar
Kim, Y. G. et al. The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands. Immunity28, 246–257 (2008). ArticleCASPubMed Google Scholar
Darfeuille-Michaud, A. et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology127, 412–421 (2004). ArticlePubMed Google Scholar
Simms, L. A. et al. Reduced α-defensin expression is associated with inflammation and not NOD2 mutation status in ileal Crohn's disease. Gut 27 February 2008 (doi:10.1136/gut.2007.142588). ArticleCASPubMed Google Scholar
Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nature Genet.39, 207–211 (2007). ArticleCASPubMed Google Scholar
Mizushima, N. et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12–Apg5 conjugate. J. Cell Sci.116, 1679–1688 (2003). ArticleCASPubMed Google Scholar
Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nature Genet.39, 596–604 (2007). ArticleCASPubMed Google Scholar
Levine, B. & Deretic, V. Unveiling the roles of autophagy in innate and adaptive immunity. Nature Rev. Immunol.7, 767–777 (2007). ArticleCAS Google Scholar
Amano, A., Nakagawa, I. & Yoshimori, T. Autophagy in innate immunity against intracellular bacteria. J. Biochem.140, 161–166 (2006). ArticleCASPubMed Google Scholar
Parkes, M. et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nature Genet.39, 830–832 (2007). ArticleCASPubMed Google Scholar
Collazo, C. M. et al. Inactivation of LRG-47 and IRG-47 reveals a family of interferon γ-inducible genes with essential, pathogen-specific roles in resistance to infection. J. Exp. Med.194, 181–188 (2001). ArticleCASPubMedPubMed Central Google Scholar
Singh, S. B., Davis, A. S., Taylor, G. A. & Deretic, V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science313, 1438–1441 (2006). CASPubMed Google Scholar
Fuss, I. J. et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn's disease LP cells manifest increased secretion of IFN-γ, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J. Immunol.157, 1261–1270 (1996). A seminal article describing the distinct cytokine profiles that distinguish Crohn's disease from ulcerative colitis. CASPubMed Google Scholar
Plevy, S. E. et al. A role for TNF-α and mucosal T helper-1 cytokines in the pathogenesis of Crohn's disease. J. Immunol.159, 6276–6282 (1997). CASPubMed Google Scholar
Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314, 1461–3 (2006). Initial description of association of variants inIL23Rwith a common, complex inflammatory disorder. ArticleCASPubMedPubMed Central Google Scholar
Cargill, M. et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet.80, 273–290 (2007). ArticleCASPubMed Google Scholar
Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genet.39, 1329–1337 (2007). ArticleCASPubMed Google Scholar
Parham, C. et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J. Immunol.168, 5699–5708 (2002). A seminal article identifyingIL23R, its expression, its signalling pathway and its relationship to IL-12R signalling pathways. ArticleCASPubMed Google Scholar
Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature441, 231–234 (2006). ArticleCASPubMed Google Scholar
Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell126, 1121–1133 (2006). ArticleCASPubMed Google Scholar
Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature441, 235–238 (2006). ArticleCASPubMed Google Scholar
Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity24, 179–189 (2006). ArticleCASPubMed Google Scholar
Wiekowski, M. T. et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J. Immunol.166, 7563–7570 (2001). ArticleCASPubMed Google Scholar
Elson, C. O. et al. Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology132, 2359–2370 (2007). ArticleCASPubMed Google Scholar
Kullberg, M. C. et al. IL-23 plays a key role in _Helicobacter hepaticus_-induced T cell-dependent colitis. J. Exp. Med.203, 2485–2494 (2006). ArticleCASPubMedPubMed Central Google Scholar
Uhlig, H. H. et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity25, 309–318 (2006). ArticleCASPubMed Google Scholar
Yen, D. et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest.116, 1310–1316 (2006). ArticleCASPubMedPubMed Central Google Scholar
Mannon, P. J. et al. Anti-interleukin-12 antibody for active Crohn's disease. N. Engl. J. Med.351, 2069–2079 (2004). ArticleCASPubMed Google Scholar
Watford, W. T. et al. Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol. Rev.202, 139–156 (2004). ArticleCASPubMed Google Scholar
Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity26, 371–381 (2007). ArticleCASPubMed Google Scholar
Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature Immunol.8, 967–974 (2007). ArticleCAS Google Scholar
Barrett, J. C. et al. Genome-wide association defines more than thirty distinct susceptibility loci for Crohn's disease. Nature Genet. (in the press).
Fuss, I. J. et al. Both IL-12p70 and IL-23 are synthesized during active Crohn's disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody. Inflamm. Bowel Dis.12, 9–15 (2006). ArticlePubMed Google Scholar
Schmidt, C. et al. Expression of interleukin-12-related cytokine transcripts in inflammatory bowel disease: elevated interleukin-23p19 and interleukin-27p28 in Crohn's disease but not in ulcerative colitis. Inflamm. Bowel Dis.11, 16–23 (2005). ArticlePubMed Google Scholar
Stallmach, A. et al. Cytokine/chemokine transcript profiles reflect mucosal inflammation in Crohn's disease. Int. J. Colorectal Dis.19, 308–315 (2004). ArticlePubMed Google Scholar
Takeda, K. et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity10, 39–49 (1999). ArticleCASPubMed Google Scholar
Wolk, K. et al. IL-22 induces lipopolysaccharide-binding protein in hepatocytes: a potential systemic role of IL-22 in Crohn's disease. J. Immunol.178, 5973–5981 (2007). ArticleCASPubMed Google Scholar
Sugimoto, K. et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest.118, 534–544 (2008). CASPubMedPubMed Central Google Scholar
Becker, C. et al. Cutting Edge: IL-23 cross-regulates IL-12 production in T cell-dependent experimental colitis. J. Immunol.177, 2760–2764 (2006). ArticleCASPubMed Google Scholar
Wilson, N. J. et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nature Immunol.8, 950–957 (2007). ArticleCAS Google Scholar
Silverberg, M. S. et al. Refined genomic localization and ethnic differences observed for the IBD5 association with Crohn's disease. Eur. J. Hum. Genet.15, 328–335 (2007). ArticleCASPubMed Google Scholar
Libioulle, C. et al. A novel susceptibility locus for Crohn's disease identified by whole genome association maps to a gene desert on chromosome 5p13.1 and modulates the level of expression of the prostaglandin receptor EP4. PLoS Genet.3, e58 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kabashima, K. et al. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J. Clin. Invest.109, 883–893 (2002). ArticleCASPubMedPubMed Central Google Scholar
Peltekova, V. D. et al. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nature Genet.36, 471–475 (2004). ArticleCASPubMed Google Scholar
Altshuler, D. et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nature Genet.26, 76–80 (2000). ArticleCASPubMed Google Scholar
Kontoyiannis, D., Pasparakis, M., Pizarro, T. T., Cominelli, F. & Kollias, G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity10, 387–398 (1999). ArticleCASPubMed Google Scholar
Remmers, E. F. et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med.357, 977–986 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lowe, C. E. et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nature Genet.39, 1074–82 (2007). ArticleCASPubMed Google Scholar
Hafler, D. A. et al. Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med.357, 851–862 (2007). ArticleCASPubMed Google Scholar
Loftus, E. V. Jr et al. Crohn's disease in Olmsted County, Minnesota, 1940–1993: incidence, prevalence, and survival. Gastroenterology114, 1161–1168 (1998). ArticlePubMed Google Scholar
Loftus, E. V. Jr et al. Ulcerative colitis in Olmsted County, Minnesota, 1940–1993: incidence, prevalence, and survival. Gut46, 336–343 (2000). ArticlePubMedPubMed Central Google Scholar
Bernstein, C. N., Blanchard, J. F., Rawsthorne, P. & Wajda, A. Epidemiology of Crohn's disease and ulcerative colitis in a central Canadian province: a population-based study. Am. J. Epidemiol.149, 916–924 (1999). ArticleCASPubMed Google Scholar
Sandler, R. S. in Inflammatory bowel disease: from bench to bedside (eds Targan, S. R. & Shanahan, F.) 5–30 (Williams and Wilkins, Baltimore, 1994). Google Scholar
Calkins, B. M. & Mendelhoff, A. I. in Inflammatory Bowel Disease (eds Kirsner, J. B. & Shorter, R. G.) 31–68 (Williams & Wilkins, Baltimore, 1995). Google Scholar
Yang, H. & Rotter, J. I. in Inflammatory bowel disease: from bench to bedside (eds Targan, S. R. & Shanahan, F.) 32–64 (Williams and Wilkins, Baltimore, 1994). Google Scholar
Ogunbi, S. O., Ransom, J. A., Sullivan, K., Schoen, B. T. & Gold, B. D. Inflammatory bowel disease in African-American children living in Georgia. J. Pediatr.133, 103–107 (1998). ArticleCASPubMed Google Scholar
Binder, V. Genetic epidemiology in inflammatory bowel disease. Digest. Dis.16, 351–355 (1998). ArticleCAS Google Scholar
Yang, H. & Rotter, J. I. in Inflammatory Bowel Disease (eds Kirsner, J. B. & Shorter, R. G.) 301–331 (Williams & Wilkins, Baltimore, 1995). Google Scholar
Tysk, C., Lindberg, E., Jarnerot, G. & Floderus-Myrhed, B. Ulcerative colitis and Crohn's disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut29, 990–996 (1988). ArticleCASPubMedPubMed Central Google Scholar
Halfvarson, J., Bodin, L., Tysk, C., Lindberg, E. & Jarnerot, G. Inflammatory bowel disease in a Swedish twin cohort: a long-term follow-up of concordance and clinical characteristics. Gastroenterology124, 1767–1773 (2003). ArticlePubMed Google Scholar
Thompson, N. P., Driscoll, R., Pounder, R. E. & Wakefield, A. J. Genetics versus environment in inflammatory bowel disease: results of a British twin study. BMJ312, 95–96 (1996). ArticleCASPubMedPubMed Central Google Scholar
Orholm, M., Binder, V., Sorensen, T. I., Rasmussen, L. P. & Kyvik, K. O. Concordance of inflammatory bowel disease among Danish twins. Results of a nationwide study. Scand. J. Gastroenterol.35, 1075–1081 (2000). ArticleCASPubMed Google Scholar
Gent, A. E., Hellier, M. D., Grace, R. H., Swarbrick, E. T. & Coggon, D. Inflammatory bowel disease and domestic hygiene in infancy. Lancet343, 766–767 (1994). ArticleCASPubMed Google Scholar
Boyko, E. J., Koepsell, T. D., Perera, D. R. & Inui, T. S. Risk of ulcerative colitis among former and current cigarette smokers. N. Engl. J. Med.316, 707–710 (1987). ArticleCASPubMed Google Scholar