NFAT, immunity and cancer: a transcription factor comes of age (original) (raw)
Shaw, J. P. et al. Identification of a putative regulator of early T cell activation genes. Science241, 202–205 (1988). ArticleCASPubMed Google Scholar
Flanagan, W. M., Corthesy, B., Bram, R. J. & Crabtree, G. R. Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature352, 803–807 (1991). ArticleCASPubMed Google Scholar
Jain, J., McCaffrey, P. G., Valge-Archer, V. E. & Rao, A. Nuclear factor of activated T cells contains Fos and Jun. Nature356, 801–804 (1992). ArticleCASPubMed Google Scholar
Jain, J. et al. The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature365, 352–355 (1993). ArticleCASPubMed Google Scholar
McCaffrey, P. G. et al. Isolation of the cyclosporin-sensitive T cell transcription factor NFATp. Science262, 750–754 (1993). ArticleCASPubMed Google Scholar
Northrop, J. P. et al. NF-AT components define a family of transcription factors targeted in T-cell activation. Nature369, 497–502 (1994). ArticleCASPubMed Google Scholar
Hoey, T., Sun, Y. L., Williamson, K. & Xu, X. Isolation of two new members of the NF-AT gene family and functional characterization of the NF-AT proteins. Immunity2, 461–472 (1995). ArticleCASPubMed Google Scholar
Liu, J. et al. Calcineurin is a common target of cyclophilin–cyclosporin A and FKBP–FK506 complexes. Cell66, 807–815 (1991). ArticleCASPubMed Google Scholar
Hogan, P. G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev.17, 2205–2232 (2003). ArticleCASPubMed Google Scholar
Macian, F. NFAT proteins: key regulators of T-cell development and function. Nature Rev. Immunol.5, 472–484 (2005). ArticleCAS Google Scholar
Zanoni, I. et al. CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation. Nature460, 264–268 (2009). References 11 and 68 were the first studies to identify a role for Ca2+–NFAT signalling in DCs. ArticleCASPubMed Google Scholar
Shukla, U., Hatani, T., Nakashima, K., Ogi, K. & Sada, K. Tyrosine phosphorylation of 3BP2 regulates B cell receptor-mediated activation of NFAT. J. Biol. Chem.284, 33719–33728 (2009). ArticleCASPubMedPubMed Central Google Scholar
Crist, S. A., Sprague, D. L. & Ratliff, T. L. Nuclear factor of activated T cells (NFAT) mediates CD154 expression in megakaryocytes. Blood111, 3553–3561 (2008). ArticleCASPubMedPubMed Central Google Scholar
Negishi-Koga, T. & Takayanagi, H. Ca2+–NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol. Rev.231, 241–256 (2009). ArticleCASPubMed Google Scholar
Winslow, M. M. et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev. Cell10, 771–782 (2006). ArticleCASPubMed Google Scholar
Heit, J. J. et al. Calcineurin/NFAT signalling regulates pancreatic β-cell growth and function. Nature443, 345–349 (2006). ArticleCASPubMed Google Scholar
Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H. & Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell132, 299–310 (2008). ArticleCASPubMedPubMed Central Google Scholar
Robbs, B. K., Cruz, A. L., Werneck, M. B., Mognol, G. P. & Viola, J. P. Dual roles for NFAT transcription factor genes as oncogenes and tumor suppressors. Mol. Cell. Biol.28, 7168–7181 (2008). This study showed that NFAT1 and NFAT2 can have opposing roles in cancer development. ArticleCASPubMedPubMed Central Google Scholar
Mancini, M. & Toker, A. NFAT proteins: emerging roles in cancer progression. Nature Rev. Cancer9, 810–820 (2009). ArticleCAS Google Scholar
Miyakawa, H., Woo, S. K., Dahl, S. C., Handler, J. S. & Kwon, H. M. Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity. Proc. Natl Acad. Sci. USA96, 2538–2542 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lopez-Rodriguez, C., Aramburu, J., Rakeman, A. S. & Rao, A. NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. Proc. Natl Acad. Sci. USA96, 7214–7219 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lopez-Rodriguez, C. et al. Loss of NFAT5 results in renal atrophy and lack of tonicity-responsive gene expression. Proc. Natl Acad. Sci. USA101, 2392–2397 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lopez-Rodriguez, C. et al. Bridging the NFAT and NF-κB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress. Immunity15, 47–58 (2001). ArticleCASPubMed Google Scholar
Hogan, P. G., Lewis, R. & Rao, A. Molecular basis of calcium signalling in lymphocytes: STIM and ORAI. Annu. Rev. Immunol.28, 491–533 (2010). ArticleCASPubMedPubMed Central Google Scholar
Feske, S. Calcium signalling in lymphocyte activation and disease. Nature Rev. Immunol.7, 690–702 (2007). ArticleCAS Google Scholar
Aramburu, J. et al. Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science285, 2129–2133 (1999). ArticleCASPubMed Google Scholar
Li, H., Rao, A. & Hogan, P. G. Interaction of calcineurin with substrates and targeting proteins. Trends Cell Biol. (in the press).
Müller, M. R. et al. Requirement for balanced Ca/NFAT signaling in hematopoietic and embryonic development. Proc. Natl Acad. Sci. USA106, 7034–7039 (2009). ArticlePubMedPubMed Central Google Scholar
Arron, J. R. et al. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature441, 595–600 (2006). ArticleCASPubMed Google Scholar
Gwack, Y. et al. A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature441, 646–650 (2006). References 30 and 31 identified DYRKs as kinases of NFAT. ArticleCASPubMed Google Scholar
Beals, C. R., Sheridan, C. M., Turck, C. W., Gardner, P. & Crabtree, G. R. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science275, 1930–1934 (1997). ArticleCASPubMed Google Scholar
Okamura, H. et al. A conserved docking motif for CK1 binding controls the nuclear localization of NFAT1. Mol. Cell. Biol.24, 4184–4195 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zhou, B. et al. Regulation of the murine Nfatc1 gene by NFATc2. J. Biol. Chem.277, 10704–10711 (2002). ArticleCASPubMed Google Scholar
Chuvpilo, S. et al. Autoregulation of NFATc1/A expression facilitates effector T cells to escape from rapid apoptosis. Immunity16, 881–895 (2002). ArticleCASPubMed Google Scholar
Huang, G. N. et al. NFAT binding and regulation of T cell activation by the cytoplasmic scaffolding Homer proteins. Science319, 476–481 (2008). This study shows that cytoplasmic scaffolding proteins contribute to the regulation of NFAT activity. ArticleCASPubMedPubMed Central Google Scholar
Willingham, A. T. et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science309, 1570–1573 (2005). This paper describes the identification of a non-coding RNA repressor of NFAT. ArticleCASPubMed Google Scholar
Wu, W. et al. Proteolytic regulation of nuclear factor of activated T (NFAT) c2 cells and NFAT activity by caspase-3. J. Biol. Chem.281, 10682–10690 (2006). ArticleCASPubMed Google Scholar
Yoeli-Lerner, M. et al. Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol. Cell20, 539–550 (2005). ArticleCASPubMed Google Scholar
Yoeli-Lerner, M., Chin, Y. R., Hansen, C. K. & Toker, A. Akt/protein kinase b and glycogen synthase kinase-3β signaling pathway regulates cell migration through the NFAT1 transcription factor. Mol. Cancer Res.7, 425–432 (2009). ArticleCASPubMedPubMed Central Google Scholar
Terui, Y., Saad, N., Jia, S., McKeon, F. & Yuan, J. Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. J. Biol. Chem.279, 28257–28265 (2004). ArticleCASPubMed Google Scholar
Nayak, A. et al. Sumoylation of the transcription factor NFATc1 leads to its subnuclear relocalization and interleukin-2 repression by histone deacetylase. J. Biol. Chem.284, 10935–10946 (2009). ArticleCASPubMedPubMed Central Google Scholar
Valdor, R. et al. Regulation of NFAT by poly(ADP-ribose) polymerase activity in T cells. Mol. Immunol.45, 1863–1871 (2008). ArticleCASPubMed Google Scholar
Sun, Z. et al. Requirement for RORγ in thymocyte survival and lymphoid organ development. Science288, 2369–2373 (2000). ArticleCASPubMed Google Scholar
Shen, F., Hu, Z., Goswami, J. & Gaffen, S. L. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J. Biol. Chem.281, 24138–24148 (2006). ArticleCASPubMed Google Scholar
Gomez-Rodriguez, J. et al. Differential expression of interleukin-17A and -17F is coupled to T cell receptor signaling via inducible T cell kinase. Immunity31, 587–597 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ghosh, S. et al. Hyperactivation of nuclear factor of activated T cells (NFAT1) in T cells attenuates severity of murine autoimmune encephalitis. Proc. Natl Acad. Sci. USA (in the press).
Bauquet, A. T. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nature Immunol.10, 167–175 (2009). ArticleCAS Google Scholar
Ho, I. C., Hodge, M. R., Rooney, J. W. & Glimcher, L. H. The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell85, 973–983 (1996). ArticleCASPubMed Google Scholar
Fehr, T. et al. A CD8 T cell-intrinsic role for the calcineurin–NFAT pathway for tolerance induction in vivo. Blood115, 1280–1287 (2010). ArticleCASPubMedPubMed Central Google Scholar
Baine, I., Abe, B. T. & Macian, F. Regulation of T-cell tolerance by calcium/NFAT signaling. Immunol. Rev.231, 225–240 (2009). ArticleCASPubMed Google Scholar
Macian, F. et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell109, 719–731 (2002). ArticleCASPubMed Google Scholar
Heissmeyer, V. et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nature Immunol.5, 255–265 (2004). ArticleCAS Google Scholar
Puga, I., Rao, A. & Macian, F. Targeted cleavage of signaling proteins by caspase 3 inhibits T cell receptor signaling in anergic T cells. Immunity29, 193–204 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hsiao, H. W. et al. Deltex1 is a target of the transcription factor NFAT that promotes T cell anergy. Immunity31, 72–83 (2009). ArticleCASPubMed Google Scholar
Nurieva, R. I. et al. The E3 ubiquitin ligase GRAIL regulates T cell tolerance and regulatory T cell function by mediating T cell receptor-CD3 degradation. Immunity32, 670–680 (2010). ArticleCASPubMedPubMed Central Google Scholar
Soto-Nieves, N. et al. Transcriptional complexes formed by NFAT dimers regulate the induction of T cell tolerance. J. Exp. Med.206, 867–876 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lal, G. et al. Epigenetic regulation of Foxp3 expression in regulatory T cells by DNA methylation. J. Immunol.182, 259–273 (2009). ArticleCASPubMed Google Scholar
Tone, Y. et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nature Immunol.9, 194–202 (2008). ArticleCAS Google Scholar
Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature463, 808–812 (2010). References 61 and 62 show that NFAT contributes to the regulation of FOXP3 expression in iTRegcells by binding to regulatory elements in theFoxp3gene. ArticleCASPubMedPubMed Central Google Scholar
Huehn, J., Polansky, J. K. & Hamann, A. Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nature Rev. Immunol.9, 83–89 (2009). ArticleCAS Google Scholar
Bopp, T. et al. NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory T cells. J. Exp. Med.201, 181–187 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell126, 375–387 (2006). This paper identified NFAT as a transcriptional partner of FOXP3 in TRegcells and showed that it controls the expression of IL-2, CD25 and CTLA4. CASPubMed Google Scholar
Hu, H., Djuretic, I., Sundrud, M. S. & Rao, A. Transcriptional partners in regulatory T cells: Foxp3, Runx and NFAT. Trends Immunol.28, 329–332 (2007). ArticleCASPubMed Google Scholar
Sumpter, T. L., Payne, K. K. & Wilkes, D. S. Regulation of the NFAT pathway discriminates CD4+CD25+ regulatory T cells from CD4+CD25− helper T cells. J. Leukoc. Biol.83, 708–717 (2008). ArticleCASPubMed Google Scholar
Goodridge, H. S., Simmons, R. M. & Underhill, D. M. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J. Immunol.178, 3107–3115 (2007). ArticleCASPubMed Google Scholar
Monticelli, S., Solymar, D. C. & Rao, A. Role of NFAT proteins in IL13 gene transcription in mast cells. J. Biol. Chem.279, 36210–36218 (2004). ArticleCASPubMed Google Scholar
Klein, M. et al. Specific and redundant roles for NFAT transcription factors in the expression of mast cell-derived cytokines. J. Immunol.177, 6667–6674 (2006). ArticleCASPubMed Google Scholar
Walczak-Drzewiecka, A., Ratajewski, M., Wagner, W. & Dastych, J. HIF-1α is up-regulated in activated mast cells by a process that involves calcineurin and NFAT. J. Immunol.181, 1665–1672 (2008). ArticleCASPubMed Google Scholar
Ulleras, E. et al. NFAT but not NF-κB is critical for transcriptional induction of the prosurvival gene A1 after IgE receptor activation in mast cells. Blood111, 3081–3089 (2008). ArticleCASPubMedPubMed Central Google Scholar
Berland, R. & Wortis, H. H. Normal B-1a cell development requires B cell-intrinsic NFATc1 activity. Proc. Natl Acad. Sci. USA100, 13459–13464 (2003). This study demonstrated that NFAT2 is required for the development of B-1a cells. ArticleCASPubMedPubMed Central Google Scholar
Winslow, M. M., Gallo, E. M., Neilson, J. R. & Crabtree, G. R. The calcineurin phosphatase complex modulates immunogenic B cell responses. Immunity24, 141–152 (2006). ArticleCASPubMed Google Scholar
Haylett, R. S., Koch, N. & Rink, L. MHC class II molecules activate NFAT and the ERK group of MAPK through distinct signaling pathways in B cells. Eur. J. Immunol.39, 1947–1955 (2009). ArticleCASPubMed Google Scholar
de Gorter, D. J., Vos, J. C., Pals, S. T. & Spaargaren, M. The B cell antigen receptor controls AP-1 and NFAT activity through Ras-mediated activation of Ral. J. Immunol.178, 1405–1414 (2007). ArticleCASPubMed Google Scholar
Bendelac, A., Savage, P. B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol.25, 297–336 (2007). ArticleCASPubMed Google Scholar
Lazarevic, V. et al. The gene encoding early growth response 2, a target of the transcription factor NFAT, is required for the development and maturation of natural killer T cells. Nature Immunol.10, 306–313 (2009). ArticleCAS Google Scholar
Ferroni, P., Santilli, F., Guadagni, F., Basili, S. & Davi, G. Contribution of platelet-derived CD40 ligand to inflammation, thrombosis and neoangiogenesis. Curr. Med. Chem.14, 2170–2180 (2007). ArticleCASPubMed Google Scholar
Gallo, E. M., Ho, L., Winslow, M. M., Staton, T. L. & Crabtree, G. R. Selective role of calcineurin in haematopoiesis and lymphopoiesis. EMBO Rep.9, 1141–1148 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kiani, A. et al. Expression analysis of nuclear factor of activated T cells (NFAT) during myeloid differentiation of CD34+ cells: regulation of Fas ligand gene expression in megakaryocytes. Exp. Hematol.35, 757–770 (2007). ArticleCASPubMed Google Scholar
Baksh, S. et al. NFATc2-mediated repression of cyclin-dependent kinase 4 expression. Mol. Cell10, 1071–1081 (2002). ArticleCASPubMed Google Scholar
Carvalho, L. D. et al. The NFAT1 transcription factor is a repressor of cyclin A2 gene expression. Cell Cycle6, 1789–1795 (2007). ArticleCASPubMed Google Scholar
Ranger, A. M., Oukka, M., Rengarajan, J. & Glimcher, L. H. Inhibitory function of two NFAT family members in lymphoid homeostasis and Th2 development. Immunity9, 627–635 (1998). ArticleCASPubMed Google Scholar
Kondo, E. et al. NF-ATc2 induces apoptosis in Burkitt's lymphoma cells through signaling via the B cell antigen receptor. Eur. J. Immunol.33, 1–11 (2003). ArticleCASPubMed Google Scholar
Neal, J. W. & Clipstone, N. A. A constitutively active NFATc1 mutant induces a transformed phenotype in 3T3-L1 fibroblasts. J. Biol. Chem.278, 17246–17254 (2003). ArticleCASPubMed Google Scholar
Jauliac, S. et al. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biol.4, 540–544 (2002). ArticleCASPubMed Google Scholar
Chen, M. & O'Connor, K. L. Integrin α6β4 promotes expression of autotaxin/ENPP2 autocrine motility factor in breast carcinoma cells. Oncogene24, 5125–5130 (2005). ArticleCASPubMed Google Scholar
Liu, S. et al. Expression of autotaxin and lysophosphatidic acid receptors increases mammary tumorigenesis, invasion, and metastases. Cancer Cell15, 539–550 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yiu, G. K. & Toker, A. NFAT induces breast cancer cell invasion by promoting the induction of cyclooxygenase-2. J. Biol. Chem.281, 12210–12217 (2006). ArticleCASPubMed Google Scholar
Zhang, H. et al. Dual activity lysophosphatidic acid receptor pan-antagonist/autotaxin inhibitor reduces breast cancer cell migration in vitro and causes tumor regression in vivo. Cancer Res.69, 5441–5449 (2009). ArticleCASPubMedPubMed Central Google Scholar
Graef, I. A., Chen, F., Chen, L., Kuo, A. & Crabtree, G. R. Signals transduced by Ca2+/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell105, 863–875 (2001). ArticleCASPubMed Google Scholar
Nagy, J. A., Dvorak, A. M. & Dvorak, H. F. VEGF-A and the induction of pathological angiogenesis. Annu. Rev. Pathol.2, 251–275 (2007). ArticleCASPubMed Google Scholar
Dvorak, H. F. Discovery of vascular permeability factor (VPF). Exp. Cell Res.312, 522–526 (2006). ArticleCASPubMed Google Scholar
Jinnin, M. et al. Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nature Med.14, 1236–1246 (2008). ArticleCASPubMed Google Scholar
Hernandez, G. L. et al. Selective inhibition of vascular endothelial growth factor-mediated angiogenesis by cyclosporin A: roles of the nuclear factor of activated T cells and cyclooxygenase 2. J. Exp. Med.193, 607–620 (2001). ArticleCASPubMedPubMed Central Google Scholar
Baek, K. H. et al. Down's syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature459, 1126–1130 (2009). ArticleCASPubMedPubMed Central Google Scholar
Qin, L. et al. Down syndrome candidate region 1 isoform 1 mediates angiogenesis through the calcineurin-NFAT pathway. Mol. Cancer Res.4, 811–820 (2006). ArticleCASPubMed Google Scholar
Norrmen, C. et al. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J. Cell Biol.185, 439–457 (2009). ArticleCASPubMedPubMed Central Google Scholar
Marafioti, T. et al. The NFATc1 transcription factor is widely expressed in white cells and translocates from the cytoplasm to the nucleus in a subset of human lymphomas. Br. J. Haematol.128, 333–342 (2005). ArticleCASPubMed Google Scholar
Akimzhanov, A. et al. Epigenetic changes and suppression of the nuclear factor of activated T cell 1 (NFATC1) promoter in human lymphomas with defects in immunoreceptor signaling. Am. J. Pathol.172, 215–224 (2008). References 104 and 105 provide a systematic analysis of NFAT deregulation in different human lymphomas. ArticleCASPubMedPubMed Central Google Scholar
Glud, S. Z. et al. A tumor-suppressor function for NFATc3 in T-cell lymphomagenesis by murine leukemia virus. Blood106, 3546–3552 (2005). This is the first paper to show that NFAT can function as a tumour suppressor. ArticleCASPubMedPubMed Central Google Scholar
Pham, L. V., Tamayo, A. T., Yoshimura, L. C., Lin-Lee, Y. C. & Ford, R. J. Constitutive NF-κB and NFAT activation in aggressive B-cell lymphomas synergistically activates the CD154 gene and maintains lymphoma cell survival. Blood106, 3940–3947 (2005). ArticleCASPubMedPubMed Central Google Scholar
Fu, L. et al. Constitutive NF-kB and NFAT activation leads to stimulation of the BLyS survival pathway in aggressive B-cell lymphomas. Blood107, 4540–4548 (2006). ArticleCASPubMedPubMed Central Google Scholar
Medyouf, H. et al. Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia. Nature Med.13, 736–741 (2007). This study showed that calcineurin can be a target for the treatment of haematological malignancies. ArticleCASPubMed Google Scholar
Gregory, M. A. et al. Wnt/Ca2+/NFAT signaling maintains survival of Ph+ leukemia cells upon inhibition of Bcr-Abl. Cancer Cell18, 74–87 (2010). This paper shows that activation of the Ca2+–NFAT-signalling pathway has an important role in the development of resistance to tyrosine kinase inhibitors. ArticleCASPubMedPubMed Central Google Scholar
Buchholz, M. et al. Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. EMBO J.25, 3714–3724 (2006). ArticleCASPubMedPubMed Central Google Scholar
Koenig, A. et al. NFAT-induced histone acetylation relay switch promotes c-Myc-dependent growth in pancreatic cancer cells. Gastroenterology138, 1189–1199 (2010). References 111 and 112 were the first to show that Ca2+–NFAT-signalling contributes to the pathogenesis of pancreatic cancer. Article Google Scholar
Lehen'kyi, V., Flourakis, M., Skryma, R. & Prevarskaya, N. TRPV6 channel controls prostate cancer cell proliferation via Ca2+/NFAT-dependent pathways. Oncogene26, 7380–7385 (2007). ArticleCASPubMed Google Scholar
Flockhart, R. J., Armstrong, J. L., Reynolds, N. J. & Lovat, P. E. NFAT signalling is a novel target of oncogenic BRAF in metastatic melanoma. Br. J. Cancer101, 1448–1455 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sales, K. J. et al. Prostaglandin F(2α)-F-prostanoid receptor regulates CXCL8 expression in endometrial adenocarcinoma cells via the calcium–calcineurin–NFAT pathway. Biochim. Biophys. Acta1793, 1917–1928 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sales, K. J. et al. Interleukin-11 in endometrial adenocarcinoma is regulated by prostaglandin F2α-F-prostanoid receptor interaction via the calcium–calcineurin–nuclear factor of activated T cells pathway and negatively regulated by the regulator of calcineurin-1. Am. J. Pathol.176, 435–445 (2010). ArticleCASPubMedPubMed Central Google Scholar
Muller, M. R. & Rao, A. Linking calcineurin activity to leukemogenesis. Nature Med.13, 669–671 (2007). ArticleCASPubMed Google Scholar
Noguchi, H. et al. A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nature Med.10, 305–309 (2004). ArticleCASPubMed Google Scholar
Roehrl, M. H. et al. Selective inhibition of calcineurin–NFAT signaling by blocking protein–protein interaction with small organic molecules. Proc. Natl Acad. Sci. USA101, 7554–7559 (2004). ArticleCASPubMedPubMed Central Google Scholar