T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion? (original) (raw)
Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity8, 177–187 (1998). CASPubMed Google Scholar
Badovinac, V. P., Haring, J. S. & Harty, J. T. Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8+ T cell response to infection. Immunity26, 827–841 (2007). CASPubMedPubMed Central Google Scholar
Miller, J. D. et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity28, 710–722 (2008). CASPubMed Google Scholar
Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nature Rev. Immunol.12, 749–761 (2012). CAS Google Scholar
Arens, R. & Schoenberger, S. P. Plasticity in programming of effector and memory CD8 T-cell formation. Immunol. Rev.235, 190–205 (2010). CASPubMedPubMed Central Google Scholar
Zehn, D., King, C., Bevan, M. J. & Palmer, E. TCR signaling requirements for activating T cells and for generating memory. Cell. Mol. Life Sci.69, 1565–1575 (2012). CASPubMed Google Scholar
Jameson, S. C. & Masopust, D. Diversity in T cell memory: an embarrassment of riches. Immunity31, 859–871 (2009). CASPubMedPubMed Central Google Scholar
Harari, A. et al. Functional signatures of protective antiviral T-cell immunity in human virus infections. Immunol. Rev.211, 236–254 (2006). CASPubMed Google Scholar
Kuchroo, V. K., Anderson, A. C. & Petrovas, C. Coinhibitory receptors and CD8 T cell exhaustion in chronic infections. Curr. Opin. HIV AIDS9, 439–445 (2014). CASPubMed Google Scholar
Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nature Rev. Immunol.13, 227–242 (2013). Google Scholar
Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med.187, 1383–1393 (1998). CASPubMedPubMed Central Google Scholar
Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R. M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature362, 758–761 (1993). CASPubMed Google Scholar
Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med.188, 2205–2213 (1998). CASPubMedPubMed Central Google Scholar
Blackburn, S. D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nature Immunol.10, 29–37 (2009). CAS Google Scholar
Wherry, E. J. T cell exhaustion. Nature Immunol.12, 492–499 (2011). CAS Google Scholar
Klenerman, P. & Hill, A. T cells and viral persistence: lessons from diverse infections. Nature Immunol.6, 873–879 (2005). CAS Google Scholar
Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nature Rev. Cancer12, 252–264 (2012). CAS Google Scholar
Kim, P. S. & Ahmed, R. Features of responding T cells in cancer and chronic infection. Curr. Opin. Immunol.22, 223–230 (2010). CASPubMedPubMed Central Google Scholar
Crespo, J., Sun, H., Welling, T. H., Tian, Z. & Zou, W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol.25, 214–221 (2013). CASPubMedPubMed Central Google Scholar
Wherry, E. J., Barber, D. L., Kaech, S. M., Blattman, J. N. & Ahmed, R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc. Natl Acad. Sci. USA101, 16004–16009 (2004). CASPubMedPubMed Central Google Scholar
Virgin, H. W., Wherry, E. J. & Ahmed, R. Redefining chronic viral infection. Cell138, 30–50 (2009). CASPubMed Google Scholar
Gairin, J. E., Mazarguil, H., Hudrisier, D. & Oldstone, M. B. Optimal lymphocytic choriomeningitis virus sequences restricted by H-2Db major histocompatibility complex class I molecules and presented to cytotoxic T lymphocytes. J. Virol.69, 2297–2305 (1995). CASPubMedPubMed Central Google Scholar
Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity27, 670–684 (2007). CASPubMed Google Scholar
Shin, H., Blackburn, S. D., Blattman, J. N. & Wherry, E. J. Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. J. Exp. Med.204, 941–949 (2007). CASPubMedPubMed Central Google Scholar
Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature439, 682–687 (2006). CASPubMed Google Scholar
Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S. & Honjo, T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nature Immunol.14, 1212–1218 (2013). CAS Google Scholar
Price, D. A. et al. T cell receptor recognition motifs govern immune escape patterns in acute SIV infection. Immunity21, 793–803 (2004). CASPubMed Google Scholar
Walker, B. & McMichael, A. The T-cell response to HIV. Cold Spring Harb. Perspect. Med.2, a007054 (2012). PubMedPubMed Central Google Scholar
Hess, C. et al. HIV-1 specific CD8+ T cells with an effector phenotype and control of viral replication. Lancet363, 863–866 (2004). CASPubMed Google Scholar
Ortiz, G. M. et al. Structured antiretroviral treatment interruptions in chronically HIV-1-infected subjects. Proc. Natl Acad. Sci. USA98, 13288–13293 (2001). CASPubMedPubMed Central Google Scholar
Fink, P. J. The biology of recent thymic emigrants. Annu. Rev. Immunol.31, 31–50 (2013). CASPubMed Google Scholar
Douek, D. C. et al. Evidence for increased T cell turnover and decreased thymic output in HIV infection. J. Immunol.167, 6663–6668 (2001). CASPubMed Google Scholar
Freel, S. A., Saunders, K. O. & Tomaras, G. D. CD8+T-cell-mediated control of HIV-1 and SIV infection. Immunol. Res.49, 135–146 (2011). CASPubMedPubMed Central Google Scholar
Schmitz, J. E. et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science283, 857–860 (1999). CASPubMed Google Scholar
Jin, X. et al. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med.189, 991–998 (1999). CASPubMedPubMed Central Google Scholar
Mahnke, Y. D. et al. Human melanoma-specific CD8+ T-cells from metastases are capable of antigen-specific degranulation and cytolysis directly ex vivo. Oncoimmunology1, 467–530 (2012). PubMedPubMed Central Google Scholar
Baitsch, L. et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J. Clin. Invest.121, 2350–2360 (2011). CASPubMedPubMed Central Google Scholar
Ahmadzadeh, M. et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood114, 1537–1544 (2009). CASPubMedPubMed Central Google Scholar
Zhang, L. et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. New Engl. J. Med.348, 203–213 (2003). CASPubMed Google Scholar
Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science313, 1960–1964 (2006). CASPubMed Google Scholar
Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nature Rev. Cancer12, 298–306 (2012). CASPubMed Google Scholar
Blackburn, S. D. et al. Tissue-specific differences in PD-1 and PD-L1 expression during chronic viral infection: implications for CD8 T-cell exhaustion. J. Virol.84, 2078–2089 (2010). CASPubMed Google Scholar
Zelinskyy, G. et al. Virus-specific CD8+ T cells upregulate programmed death-1 expression during acute friend retrovirus infection but are highly cytotoxic and control virus replication. J. Immunol.187, 3730–3737 (2011). CASPubMed Google Scholar
Larsen, M. et al. Exhausted cytotoxic control of Epstein-Barr virus in human lupus. PLoS Pathog.7, e1002328 (2011). CASPubMedPubMed Central Google Scholar
Sakhdari, A. et al. Tim-3 negatively regulates cytotoxicity in exhausted CD8+ T cells in HIV infection. PLoS ONE7, e40146 (2012). CASPubMedPubMed Central Google Scholar
Fourcade, J. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med.207, 2175–2186 (2010). CASPubMedPubMed Central Google Scholar
Jin, H. T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl Acad. Sci. USA107, 14733–14738 (2010). CASPubMedPubMed Central Google Scholar
Nakamoto, N. et al. Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade. PLoS Pathog.5, e1000313 (2009). PubMedPubMed Central Google Scholar
Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med.207, 2187–2194 (2010). CASPubMedPubMed Central Google Scholar
Woo, S. R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res.72, 917–927 (2012). CASPubMed Google Scholar
Blackburn, S. D., Shin, H., Freeman, G. J. & Wherry, E. J. Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade. Proc. Natl Acad. Sci. USA105, 15016–15021 (2008). CASPubMedPubMed Central Google Scholar
Matloubian, M., Concepcion, R. J. & Ahmed, R. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J. Virol.68, 8056–8063 (1994). CASPubMedPubMed Central Google Scholar
Snyder, C. M. et al. Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity29, 650–659 (2008). CASPubMedPubMed Central Google Scholar
Ibegbu, C. C. et al. Expression of killer cell lectin-like receptor G1 on antigen-specific human CD8+ T lymphocytes during active, latent, and resolved infection and its relation with CD57. J. Immunol.174, 6088–6094 (2005). CASPubMed Google Scholar
Hislop, A. D., Taylor, G. S., Sauce, D. & Rickinson, A. B. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu. Rev. Immunol.25, 587–617 (2007). CASPubMed Google Scholar
Freeman, M. L., Burkum, C. E., Jensen, M. K., Woodland, D. L. & Blackman, M. A. γ-Herpesvirus reactivation differentially stimulates epitope-specific CD8 T cell responses. J. Immunol.188, 3812–3819 (2012). CASPubMed Google Scholar
Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nature Med.8, 379–385 (2002). CASPubMed Google Scholar
Hertoghs, K. M. et al. Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation. J. Clin. Invest.120, 4077–4090 (2010). CASPubMedPubMed Central Google Scholar
Lichterfeld, M. et al. Selective depletion of high-avidity human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells after early HIV-1 infection. J. Virol.81, 4199–4214 (2007). CASPubMedPubMed Central Google Scholar
Vigano, S. et al. Rapid perturbation in viremia levels drives increases in functional avidity of HIV-specific CD8 T cells. PLoS Pathog.9, e1003423 (2013). CASPubMedPubMed Central Google Scholar
Utzschneider, D. T. et al. T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nature Immunol.14, 603–610 (2013). CAS Google Scholar
Youngblood, B. et al. Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8+ T cells. Immunity35, 400–412 (2011). CASPubMedPubMed Central Google Scholar
Youngblood, B. et al. Cutting edge: Prolonged exposure to HIV reinforces a poised epigenetic program for PD-1 expression _in virus_-specific CD8 T cells. J. Immunol.191, 540–544 (2013). CASPubMed Google Scholar
Kasprowicz, V. et al. High level of PD-1 expression on hepatitis C virus (HCV)-specific CD8+ and CD4+ T cells during acute HCV infection, irrespective of clinical outcome. J. Virol.82, 3154–3160 (2008). CASPubMed Google Scholar
Wherry, E. J., Blattman, J. N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol.77, 4911–4927 (2003). CASPubMedPubMed Central Google Scholar
Gerlach, C. et al. Heterogeneous differentiation patterns of individual CD8+ T cells. Science340, 635–639 (2013). CASPubMed Google Scholar
Buchholz, V. R. et al. Disparate individual fates compose robust CD8+ T cell immunity. Science340, 630–635 (2013). CASPubMed Google Scholar
Williams, M. A. & Bevan, M. J. Effector and memory CTL differentiation. Annu. Rev. Immunol.25, 171–192 (2007). CASPubMed Google Scholar
Paley, M. A. et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science338, 1220–1225 (2012). CASPubMedPubMed Central Google Scholar
Sun, J. C. & Bevan, M. J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science300, 339–342 (2003). CASPubMedPubMed Central Google Scholar
Waggoner, S. N., Cornberg, M., Selin, L. K. & Welsh, R. M. Natural killer cells act as rheostats modulating antiviral T cells. Nature481, 394–398 (2012). CAS Google Scholar
Angelosanto, J. M., Blackburn, S. D., Crawford, A. & Wherry, E. J. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. J. Virol.86, 8161–8170 (2012). CASPubMedPubMed Central Google Scholar
Doering, T. A. et al. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity37, 1130–1144 (2012). CASPubMedPubMed Central Google Scholar
Cornberg, M. et al. Clonal exhaustion as a mechanism to protect against severe immunopathology and death from an overwhelming CD8 T cell response. Frontiers Immunol.4, 475 (2013). Google Scholar
Doedens, A. L. et al. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nature Immunol.14, 1173–1182 (2013). CAS Google Scholar
Frebel, H. et al. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. J. Exp. Med.209, 2485–2499 (2012). CASPubMedPubMed Central Google Scholar
Mueller, S. N. et al. PD-L1 has distinct functions in hematopoietic and nonhematopoietic cells in regulating T cell responses during chronic infection in mice. J. Clin. Invest.120, 2508–2515 (2010). CASPubMedPubMed Central Google Scholar
Hirano, F. et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res.65, 1089–1096 (2005). CASPubMed Google Scholar
Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. New Engl. J. Med.366, 2443–2454 (2012). CASPubMed Google Scholar
Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA99, 12293–12297 (2002). CASPubMedPubMed Central Google Scholar
Wakim, L. M., Waithman, J., van Rooijen, N., Heath, W. R. & Carbone, F. R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science319, 198–202 (2008). CASPubMed Google Scholar
Gebhardt, T. et al. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nature Immunol.10, 524–530 (2009). CAS Google Scholar
Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature483, 227–231 (2012). CASPubMedPubMed Central Google Scholar
Mueller, S. N., Gebhardt, T., Carbone, F. R. & Heath, W. R. Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol.31, 137–161 (2013). CASPubMed Google Scholar
Wakim, L. M. et al. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J. Immunol.189, 3462–3471 (2012). CASPubMed Google Scholar
Zhu, J. et al. Immune surveillance by CD8αα+ skin-resident T cells in human herpes virus infection. Nature497, 494–497 (2013). CASPubMedPubMed Central Google Scholar
Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. New Engl. J. Med.363, 711–723 (2010). CASPubMed Google Scholar
Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. New Engl. J. Med.366, 2455–2465 (2012). CASPubMed Google Scholar
Ribas, A. Tumor immunotherapy directed at PD-1. New Engl. J. Med.366, 2517–2519 (2012). CASPubMed Google Scholar
Hamid, O. et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. New Engl. J. Med.369, 134–144 (2013). CASPubMed Google Scholar
Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. New Engl. J. Med.369, 122–133 (2013). CASPubMed Google Scholar
Riley, J. L. Combination checkpoint blockade — taking melanoma immunotherapy to the next level. New Engl. J. Med.369, 187–189 (2013). CASPubMed Google Scholar
Korman, A. J., Peggs, K. S. & Allison, J. P. Checkpoint blockade in cancer immunotherapy. Adv. Immunol.90, 297–339 (2006). CASPubMedPubMed Central Google Scholar
Gardiner, D. et al. A randomized, double-blind, placebo-controlled assessment of BMS-936558, a fully human monoclonal antibody to programmed death-1 (PD-1), in patients with chronic hepatitis C virus infection. PLoS ONE8, e63818 (2013). PubMedPubMed Central Google Scholar
Fuller, M. J. et al. Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1). Proc. Natl Acad. Sci. USA110, 15001–15006 (2013). CASPubMedPubMed Central Google Scholar
Velu, V. et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature458, 206–210 (2009). CASPubMed Google Scholar
Minter, S., Willner, I. & Shirai, K. Ipilimumab-induced hepatitis C viral suppression. J. Clin. Oncol.31, e307–e308 (2013). PubMed Google Scholar