The WASP–WAVE protein network: connecting the membrane to the cytoskeleton (original) (raw)
Wiskott, A. Familiarer, angeborener Morbus Welhofii? Monatsschr. Kinderheilkd.68, 212–216 (1937). Google Scholar
Aldrich, R. A., Steinberg, A. G. & Campbell, D. C. Pedigree demonstrating a sex-linked recessive condition characterized by draining ears, eczematoid dermatitis and bloody diarrhea. Pediatrics13, 133–139 (1954). CASPubMed Google Scholar
Thrasher, A. J. WASp in immune-system organization and function. Nature Rev. Immunol.2, 635–646 (2002). CAS Google Scholar
Ochs, H. D. & Notarangelo, L. D. Structure and function of the Wiskott–Aldrich syndrome protein. Curr. Opin. Hematol.12, 284–291 (2005). CASPubMed Google Scholar
Derry, J. M., Ochs, H. D. & Francke, U. Isolation of a novel gene mutated in Wiskott–Aldrich syndrome. Cell78, 635–644 (1994). Discovery of WASP. CASPubMed Google Scholar
Miki, H., Miura, K. & Takenawa, T. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J.15, 5326–5335 (1996). Discovery of N-WASP. PubMedPubMed Central Google Scholar
Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell112, 453–465 (2003). CASPubMed Google Scholar
Takenawa, T. & Miki, H. WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J. Cell Sci.114, 1801–1809 (2001). CASPubMed Google Scholar
Miki, H., Suetsugu, S. & Takenawa, T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J.17, 6932–6941 (1998). Discovery of WAVE1. CASPubMedPubMed Central Google Scholar
Bear, J. E., Rawls, J. F. & Saxe III, C. L. SCAR, a WASP-related protein, isolated as a suppressor of receptor defects in late Dictyostelium development. J. Cell Biol.142, 1325–1335 (1998). CASPubMedPubMed Central Google Scholar
Suetsugu, S., Miki, H. & Takenawa, T. Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with Arp2/3 complex. Biochem. Biophys. Res. Commun.260, 296–302 (1999). Discovery of WAVE2 and WAVE3. CASPubMed Google Scholar
Li, R. Bee1, a yeast protein with homology to Wiscott–Aldrich syndrome protein, is critical for the assembly of cortical actin cytoskeleton. J. Cell Biol.136, 649–658 (1997). CASPubMedPubMed Central Google Scholar
Panchal, S. C., Kaiser, D. A., Torres, E., Pollard, T. D. & Rosen, M. K. A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex. Nature Struct. Biol.10, 591–598 (2003). CASPubMed Google Scholar
Miki, H. & Takenawa, T. Direct binding of the verprolin-homology domain in N-WASP to actin is essential for cytoskeletal reorganization. Biochem. Biophys. Res. Commun.243, 73–78 (1998). CASPubMed Google Scholar
Symons, M. et al. Wiskott–Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell84, 723–734 (1996). CASPubMed Google Scholar
Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell97, 221–231 (1999). Demonstration of N-WASP autoinhibition. CASPubMed Google Scholar
Machesky, L. M. & Insall, R. H. Scar1 and the related Wiskott–Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr. Biol.8, 1347–1356 (1998). CASPubMed Google Scholar
Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA96, 3739–3744 (1999). References 17 and 18 reported the identification of the ARP2/3 complex as a WASP/WAVE binding partner and showed that ARP2/3 is activated by WAVE. CASPubMedPubMed Central Google Scholar
Pantaloni, D., Boujemaa, R., Didry, D., Gounon, P. & Carlier, M.-F. The Arp2/3 complex branches filament barbed ends: functional antagonism with capping proteins. Nature Cell. Biol.2, 385–391 (2000). CASPubMed Google Scholar
Blanchoin, L. et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature404, 1007–1011 (2000). CASPubMed Google Scholar
Fujiwara, I., Suetsugu, S., Uemura, S., Takenawa, T. & Ishiwata, S. Visualization and force measurement of branching by Arp2/3 complex and N-WASP in actin filament. Biochem. Biophys. Res. Commun.293, 1550–1555 (2002). CASPubMed Google Scholar
Yarar, D., D'Alessio, J. A., Jeng, R. L. & Welch, M. D. Motility determinants in WASP family proteins. Mol. Biol. Cell13, 4045–4059 (2002). CASPubMedPubMed Central Google Scholar
Suetsugu, S., Miki, H. & Takenawa, T. Identification of another Actin-related protein (Arp) 2/3 complex binding site in neural Wiskott–Aldrich syndrome protein (N-WASP), that complements actin polymerization induced by the Arp2/3 complex activating (VCA) domain of N-WASP. J. Biol. Chem.276, 33175–33180 (2001). CASPubMed Google Scholar
Suetsugu, S., Miki, H., Yamaguchi, H. & Takenawa, T. Requirement of the basic region of N-WASP/WAVE2 for actin-based motility. Biochem. Biophys. Res. Commun.282, 739–744 (2001). CASPubMed Google Scholar
Rodal, A. A., Manning, A. L., Goode, B. L. & Drubin, D. G. Negative regulation of yeast WASp by two SH3 domain-containing proteins. Curr. Biol.13, 1000–1008 (2003). CASPubMed Google Scholar
Aspenstrom, P., Lindberg, U. & Hall, A. Two GTPases, Cdc42 and Rac, bind directly to a protein implicated in the immunodeficiency disorder Wiskott–Aldrich syndrome. Curr. Biol.6, 70–75 (1996). CASPubMed Google Scholar
Volkman, B. F., Prehoda, K. E., Scott, J. A., Peterson, F. C. & Lim, W. A. Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott–Aldrich syndrome. Cell111, 565–576 (2002). CASPubMed Google Scholar
Ramesh, N., Anton, I. M., Hartwig, J. H. & Geha, R. S. WIP, a protein associated with Wiskott–Aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc. Natl Acad. Sci. USA94, 14671–14676 (1997). Identification of WIP. CASPubMedPubMed Central Google Scholar
Aspenstrom, P. The WASP-binding protein WIRE has a role in the regulation of the actin filament system downstream of the platelet-derived growth factor receptor. Exp. Cell Res.279, 21–33 (2002). PubMed Google Scholar
Kato, M. et al. WICH, a novel verprolin homology domain-containing protein that functions cooperatively with N-WASP in actin-microspike formation. Biochem. Biophys. Res. Commun.291, 41–47 (2002). CASPubMed Google Scholar
Ho, H. Y., Rohatgi, R., Ma, L. & Kirschner, M. W. CR16 forms a complex with N-WASP in brain and is a novel member of a conserved proline-rich actin-binding protein family. Proc. Natl Acad. Sci. USA98, 11306–11311 (2001). CASPubMedPubMed Central Google Scholar
Aspenstrom, P. The mammalian verprolin homologue WIRE participates in receptor-mediated endocytosis and regulation of the actin filament system by distinct mechanisms. Exp. Cell Res.298, 485–498 (2004). PubMed Google Scholar
Krzewski, K., Chen, X., Orange, J. S. & Strominger, J. L. Formation of a WIP-, WASp-, actin-, and myosin IIA-containing multiprotein complex in activated NK cells and its alteration by KIR inhibitory signaling. J. Cell Biol.173, 121–132 (2006). CASPubMedPubMed Central Google Scholar
Sawa, M. & Takenawa, T. Caenorhabditis elegans WASP-interacting protein homologue WIP-1 is involved in morphogenesis through maintenance of WSP-1 protein levels. Biochem. Biophys. Res. Commun.340, 709–717 (2006). CASPubMed Google Scholar
Martinez-Quiles, N. et al. WIP regulates N-WASP-mediated actin polymerization and filopodium formation. Nature Cell Biol.3, 484–491 (2001). CASPubMed Google Scholar
Ho, H. Y. et al. Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP–WIP complex. Cell118, 203–216 (2004). CASPubMed Google Scholar
Hertzog, M. et al. The β-thymosin/WH2 domain; structural basis for the switch from inhibition to promotion of actin assembly. Cell117, 611–623 (2004). CASPubMed Google Scholar
Sasahara, Y. et al. Mechanism of recruitment of WASP to the immunological synapse and of its activation following TCR ligation. Mol. Cell10, 1269–1281 (2002). CASPubMed Google Scholar
Moreau, V. et al. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nature Cell Biol.2, 441–448 (2000). CASPubMed Google Scholar
Frischknecht, F. et al. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. Nature401, 926–929 (1999). CASPubMed Google Scholar
Anton, I. M. et al. WIP deficiency reveals a differential role for WIP and the actin cytoskeleton in T and B cell activation. Immunity16, 193–204 (2002). CASPubMed Google Scholar
Snapper, S. B. et al. Wiskott–Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity9, 81–91 (1998). CASPubMed Google Scholar
Rohatgi, R., Ho, H. Y. & Kirschner, M. W. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol.150, 1299–1310 (2000). CASPubMedPubMed Central Google Scholar
Higgs, H. N. & Pollard, T. D. Activation by Cdc42 and PIP(2) of Wiskott–Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J. Cell Biol.150, 1311–1320 (2000). CASPubMedPubMed Central Google Scholar
Miki, H., Sasaki, T., Takai, Y. & Takenawa, T. Induction of filopodium formation by WASP-related actin-depolymerizing protein N-WASP. Nature391, 93–96 (1998). CASPubMed Google Scholar
Hall, A. Rho GTPase and the actin cytoskeleton. Science279, 509–514 (1998). CASPubMed Google Scholar
Abe, T., Kato, M., Miki, H., Takenawa, T. & Endo, T. Small GTPase Tc10 and its homologue RhoT induce N-WASP-mediated long process formation and neurite outgrowth. J. Cell Sci.116, 155–168 (2003). CASPubMed Google Scholar
Hemsath, L., Dvorsky, R., Fiegen, D., Carlier, M. F. & Ahmadian, M. R. An electrostatic steering mechanism of Cdc42 recognition by Wiskott–Aldrich syndrome proteins. Mol. Cell20, 313–324 (2005). CASPubMed Google Scholar
Aronheim, A. et al. Chp, a homologue of the GTPase Cdc42Hs, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton. Curr. Biol.8, 1125–1128 (1998). CASPubMed Google Scholar
Kim, A. S., Kakalis, L. T., Abdul-Manan, N., Liu, G. A. & Rosen, M. K. Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein. Nature404, 151–158 (2000). CASPubMed Google Scholar
Prehoda, K. E., Scott, J. A., Mullins, D. R. & Lim, W. A. Integration of multiple signals through cooperative regulation of the N-WASP–Arp2/3 complex. Science290, 801–806 (2000). CASPubMed Google Scholar
Suetsugu, S. et al. Regulation of actin cytoskeleton by mDab1 through N-WASP and ubiquitination of mDab1. Biochem. J.384, 1–8 (2004). CASPubMedPubMed Central Google Scholar
Fukuoka, M. et al. A novel neural Wiskott–Aldrich syndrome protein (N-WASP) binding protein, WISH, induces Arp2/3 complex activation independent of Cdc42. J. Cell Biol.152, 471–482 (2001). CASPubMedPubMed Central Google Scholar
Carlier, M.-F. et al. Grb2 links signaling to actin assembly by enhancing interaction of neural Wiskott–Aldrich syndrome protein (N-WASP) with actin-related protein (Arp2/3) complex. J. Biol. Chem.275, 21946–21952 (2000). CASPubMed Google Scholar
Rohatgi, R., Nollau, P., Ho, H. Y., Kirschner, M. W. & Mayer, B. J. Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP–Arp2/3 pathway. J. Biol. Chem.276, 26448–26452 (2001). CASPubMed Google Scholar
Tsujita, K. et al. Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J. Cell Biol.172, 269–279 (2006). CASPubMedPubMed Central Google Scholar
Cory, G. O., Garg, R., Cramer, R. & Ridley, A. J. Phosphorylation of tyrosine 291 enhances the ability of WASp to stimulate actin polymerization and filopodium formation. Wiskott–Aldrich syndrome protein. J. Biol. Chem.277, 45115–45121 (2002). CASPubMed Google Scholar
Suetsugu, S. et al. Sustained activation of N-WASP through phosphorylation is essential for neurite extension. Dev. Cell3, 645–658 (2002). The first report that WASP and WAVE proteins are degraded by proteasomes. CASPubMed Google Scholar
Torres, E. & Rosen, M. K. Contingent phosphorylation/dephosphorylation provides a mechanism of molecular memory in WASP. Mol. Cell11, 1215–1227 (2003). CASPubMed Google Scholar
Park, S. J., Suetsugu, S. & Takenawa, T. Interaction of HSP90 to N-WASP leads to activation and protection from proteasome-dependent degradation. EMBO J.24, 1557–1570 (2005). CASPubMedPubMed Central Google Scholar
Schulte, R. J. & Sefton, B. M. Inhibition of the activity of SRC and Abl tyrosine protein kinases by the binding of the Wiskott–Aldrich syndrome protein. Biochemistry42, 9424–9430 (2003). CASPubMed Google Scholar
Itoh, T. et al. Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev. Cell9, 791–804 (2005). References 56 and 63 report the identification of the EFC domain as a membrane-deforming domain. The role of PCH family proteins in linking membrane deformation with the cytoskeleton was proposed in this paper. CASPubMed Google Scholar
Gundelfinger, E. D., Kessels, M. M. & Qualmann, B. Temporal and spatial coordination of exocytosis and endocytosis. Nature Rev. Mol. Cell Biol.4, 127–139 (2003). CAS Google Scholar
Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science303, 495–499 (2004). The structure of BAR domain indicates that the shape of the protein dictates the shape of the membrane. CASPubMed Google Scholar
Naqvi, S. N., Zahn, R., Mitchell, D. A., Stevenson, B. J. & Munn, A. L. The WASp homologue Las17p functions with the WIP homologue End5p/verprolin and is essential for endocytosis in yeast. Curr. Biol.8, 959–962 (1998). Proposes a role for WASP family proteins in association with WIP in endocytosis. CASPubMed Google Scholar
Qualmann, B. & Kelly, R. B. Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J. Cell Biol.148, 1047–1062 (2000). N-WASP is shown to be involved in endocytosis through binding to an EFC-domain-containing protein. CASPubMedPubMed Central Google Scholar
Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell123, 305–320 (2005). CASPubMed Google Scholar
Otsuki, M., Itoh, T. & Takenawa, T. T. N-WASP is recruited to rafts and associates with endophilin A in response to EGF. J. Biol. Chem.278, 6461–6469 (2002). PubMed Google Scholar
Madania, A. et al. The Saccharomyces cerevisiae homologue of human Wiskott–Aldrich syndrome protein Las17p interacts with the Arp2/3 complex. Mol. Biol. Cell10, 3521–3538 (1999). CASPubMedPubMed Central Google Scholar
Kamioka, Y. et al. A novel dynamin-associating molecule, formin-binding protein 17, induces tubular membrane invaginations and participates in endocytosis. J. Biol. Chem.279, 40091–40099 (2004). CASPubMed Google Scholar
Soulard, A. et al. Saccharomyces cerevisiae Bzz1p is implicated with type I myosins in actin patch polarization and is able to recruit actin-polymerizing machinery in vitro. Mol. Cell. Biol.22, 7889–7906 (2002). CASPubMedPubMed Central Google Scholar
Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell121, 593–606 (2005). CASPubMed Google Scholar
Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol.145, 1009–1026 (1999). CASPubMedPubMed Central Google Scholar
Kaksonen, M., Toret, C. P. & Drubin, D. G. Harnessing actin dynamics for clathrin-mediated endocytosis. Nature Rev. Mol. Cell Biol.7, 404–414 (2006). CAS Google Scholar
Rozelle, A. L. et al. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP–Arp2/3. Curr. Biol.10, 311–320 (2000). CASPubMed Google Scholar
Taunton, J. et al. Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol.148, 519–530 (2000). CASPubMedPubMed Central Google Scholar
Nakagawa, H. et al. N-WASP, WAVE and Mena play different roles in the organization of actin cytoskeleton in lamellipodia. J. Cell Sci.114, 1555–1565 (2001). CASPubMed Google Scholar
Lommel, S. et al. Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP- defective cells. EMBO Rep.2, 850–857 (2001). CASPubMedPubMed Central Google Scholar
Snapper, S. B. et al. N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nature Cell Biol.3, 897–904 (2001). CASPubMed Google Scholar
Suetsugu, S., Miki, H., Yamaguchi, H., Obinata, T. & Takenawa, T. Enhancement of branching efficiency by the actin filament-binding activity of N-WASP/WAVE2. J. Cell Sci.114, 4533–4542 (2001). CASPubMed Google Scholar
Steffen, A. et al. Filopodia formation in the absence of functional WAVE and Arp2/3 complexes. Mol. Biol. Cell17, 2581–2591 (2006). CASPubMedPubMed Central Google Scholar
Schirenbeck, A., Bretschneider, T., Arasada, R., Schleicher, M. & Faix, J. The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nature Cell Biol.7, 619–625 (2005). CASPubMed Google Scholar
Buccione, R., Orth, J. D. & McNiven, M. A. Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nature Rev. Mol. Cell Biol.5, 647–657 (2004). CAS Google Scholar
Linder, S. & Aepfelbacher, M. Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol.13, 376–385 (2003). CASPubMed Google Scholar
Mizutani, K., Miki, H., He, H., Maruta, H. & Takenawa, T. Essential role of neural Wiskott–Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src-transformed fibroblasts. Cancer Res.62, 669–674 (2002). CASPubMed Google Scholar
Weaver, A. et al. Interaction of cortactin and N-WASP with Arp2/3 complex. Curr. Biol.12, 1270 (2002). CASPubMed Google Scholar
Yamaguchi, H. et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP–Arp2/3 complex pathway and cofilin. J. Cell Biol.168, 441–452 (2005). CASPubMedPubMed Central Google Scholar
Weaver, A. M. et al. Cortactin promotes and stabilizes Arp2/3-induced actin filament network formation. Curr. Biol.11, 370–374 (2001). CASPubMed Google Scholar
Uruno, T. et al. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nature Cell Biol.3, 259–266 (2001). CASPubMed Google Scholar
Krueger, E. W., Orth, J. D., Cao, H. & McNiven, M. A. A dynamin–cortactin–Arp2/3 complex mediates Actin reorganization in growth factor-stimulated cells. Mol. Biol. Cell14, 1085–1096 (2003). CASPubMedPubMed Central Google Scholar
Schafer, D. A. et al. Dynamin2 and cortactin regulate actin assembly and filament organization. Curr. Biol.12, 1852–1857 (2002). CASPubMed Google Scholar
Wu, X., Suetsugu, S., Cooper, L. A., Takenawa, T. & Guan, J. L. Focal adhesion kinase regulation of N-WASP subcellular localization and function. J. Biol. Chem.279, 9565–9576 (2004). CASPubMed Google Scholar
Jones, N. et al. Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. Nature440, 818–823 (2006). CASPubMed Google Scholar
Gruenheid, S. et al. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nature Cell Biol.3, 856–859 (2001). CASPubMed Google Scholar
Rivera, G. M., Briceno, C. A., Takeshima, F., Snapper, S. B. & Mayer, B. J. Inducible clustering of membrane-targeted SH3 domains of the adaptor protein Nck triggers localized actin polymerization. Curr. Biol.14, 11–22 (2004). CASPubMed Google Scholar
Oikawa, T. et al. PtdIns(3,4,5)P3 binding is necessary for WAVE2-induced formation of lamellipodia. Nature Cell Biol.6, 420–426 (2004). CASPubMed Google Scholar
Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M. & Kirschner, M. W. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature418, 790–793 (2002). Identification of the WAVE complex that consists of WAVE1, ABI1/2, NAP1/p125NAP1, SRA1/PIR121 and HSPC300. Proposes trans-inhibition of WAVE. The presence of the Rac-binding molecule, SRA1/PIR121, in the WAVE complex was also described. CASPubMed Google Scholar
Innocenti, M. et al. Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nature Cell Biol.6, 319–327 (2004). Demonstration of constitutive formation of the WAVE2 complex. CASPubMed Google Scholar
Gautreau, A. et al. Purification and architecture of the ubiquitous Wave complex. Proc. Natl Acad. Sci. USA101, 4379–4383 (2004). CASPubMedPubMed Central Google Scholar
Suetsugu, S. et al. Optimization of WAVE2-complex-induced actin polymerization by membrane-bound IRSp53, PIP3, and Rac. J. Cell Biol.173, 571–585 (2006). The WAVE2 complex was purified from cells and its activity in the ARP2/3 activation was examined. Reconcilement of two proposals, through SRA1/PIR121 and IRSp53, for Rac association with WAVE2. CASPubMedPubMed Central Google Scholar
Stovold, C. F., Millard, T. H. & Machesky, L. M. Inclusion of Scar/WAVE3 in a similar complex to Scar/WAVE1 and 2. BMC Cell Biol.6, 11 (2005). PubMedPubMed Central Google Scholar
Leng, Y. et al. Abelson-interactor-1 promotes WAVE2 membrane translocation and Abelson-mediated tyrosine phosphorylation required for WAVE2 activation. Proc. Natl Acad. Sci. USA102, 1098–1103 (2005). CASPubMedPubMed Central Google Scholar
Soto, M. C. et al. The GEX-2 and GEX-3 proteins are required for tissue morphogenesis and cell migrations in C. elegans. Genes Dev.16, 620–632 (2002). CASPubMedPubMed Central Google Scholar
Sawa, M. et al. Essential role of the C. elegans Arp2/3 complex in cell migration during ventral enclosure. J. Cell Sci.116, 1505–1518 (2003). CASPubMed Google Scholar
Kitamura, T. et al. Molecular cloning of p125Nap1, a protein that associates with an SH3 domain of Nck. Biochem. Biophys. Res. Commun.219, 509–514 (1996). CASPubMed Google Scholar
Kobayashi, K. et al. p140Sra-1 (specifically Rac1-associated protein) is a novel specific target for Rac1 small GTPase. J. Biol. Chem.273, 291–295 (1998). CASPubMed Google Scholar
Steffen, A. et al. Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBO J.23, 749–759 (2004). CASPubMedPubMed Central Google Scholar
Kunda, P., Craig, G., Dominguez, V. & Baum, B. Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr. Biol.13, 1867–1875 (2003). CASPubMed Google Scholar
Rogers, S. L., Wiedemann, U., Stuurman, N. & Vale, R. D. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J. Cell Biol.162, 1079–1088 (2003). CASPubMedPubMed Central Google Scholar
Nozumi, M., Nakagawa, H., Miki, H., Takenawa, T. & Miyamoto, S. Differential localization of WAVE isoforms in filopodia and lamellipodia of the neuronal growth cone. J. Cell Sci.116, 239–246 (2003). CASPubMed Google Scholar
Suetsugu, S., Yamazaki, D., Kurisu, S. & Takenawa, T. Differential roles of WAVE1 and WAVE2 in dorsal and peripheral ruffle formation for fibroblast cell migration. Dev. Cell5, 595–609 (2003). Description of differential roles for WAVE1 and WAVE2. The requirement of WAVE2 in lamellipodia formation is established in this paper and in reference 113. CASPubMed Google Scholar
Yamazaki, D., Fujiwara, T., Suetsugu, S. & Takenawa, T. A novel function of WAVE in lamellipodia: WAVE1 is required for stabilization of lamellipodial protrusions during cell spreading. Genes Cells10, 381–392 (2005). CASPubMed Google Scholar
Kim, Y. et al. Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature442, 814–817 (2006). Involvement of WAVE1 in spine formation. CDK5-mediated phosphorylation of WAVE1 is reported to inhibit WAVE1-induced ARP2/3 activation in spine formation. CASPubMed Google Scholar
Yan, C. et al. WAVE2 deficiency reveals distinct roles in embryogenesis and Rac-mediated actin-based motility. EMBO J.22, 3602–3612 (2003). CASPubMedPubMed Central Google Scholar
Yamazaki, D. et al. WAVE2 is required for directed cell migration and cardiovascular development. Nature424, 452–456 (2003). CASPubMed Google Scholar
Yeh, T. C., Ogawa, W., Danielsen, A. G. & Roth, R. A. Characterization and cloning of a 58/53-kDa substrate of the insulin receptor tyrosine kinase. J. Biol. Chem.271, 2921–2928 (1996). CASPubMed Google Scholar
Miki, H., Yamaguchi, H., Suetsugu, S. & Takenawa, T. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature408, 732–735 (2000). Identification of IRSp53 as a linker molecule between Rac and WAVE2. CASPubMed Google Scholar
Choi, J. et al. Regulation of dendritic spine morphogenesis by insulin receptor substrate 53, a downstream effector of Rac1 and Cdc42 small GTPases. J. Neurosci.25, 869–879 (2005). CASPubMedPubMed Central Google Scholar
Nakagawa, H. et al. IRSp53 is colocalised with WAVE2 at the tips of protruding lamellipodia and filopodia independently of Mena. J. Cell Sci.116, 2577–2583 (2003). CASPubMed Google Scholar
Krugmann, S. et al. Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr. Biol.11, 1645–1655 (2001). CASPubMed Google Scholar
Yamagishi, A., Masuda, M., Ohki, T., Onishi, H. & Mochizuki, N. A novel actin bundling/filopodium-forming domain conserved in insulin receptor tyrosine kinase substrate p53 and missing in metastasis protein. J. Biol. Chem.279, 14929–14936 (2004). CASPubMed Google Scholar
Millard, T. H. et al. Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J.24, 240–250 (2005). First report of the structure of the RCB/IMD domain of IRSp53. CASPubMedPubMed Central Google Scholar
Suetsugu, S. et al. The RAC-binding domain/IRSP53-MIM homology domain of IRSP53 induces RAC-dependent membrane deformation. J. Biol. Chem.281, 35347–35358 (2006). Reports Rac-dependent membrane deformation by the RCB/IMD domain. CASPubMed Google Scholar
Govind, S., Kozma, R., Monfries, C., Lim, L. & Ahmed, S. Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin. J. Cell Biol.152, 579–594 (2001). CASPubMedPubMed Central Google Scholar
Soderling, S. H. et al. The WRP component of the WAVE-1 complex attenuates Rac-mediated signalling. Nature Cell Biol.4, 970–975 (2002). CASPubMed Google Scholar
Wu, R. F., Gu, Y., Xu, Y. C., Nwariaku, F. E. & Terada, L. S. Vascular endothelial growth factor causes translocation of p47phox to membrane ruffles through WAVE1. J. Biol. Chem.278, 36830–36840 (2003). CASPubMed Google Scholar
Westphal, R. S., Soderling, S. H., Alto, N. M., Langeberg, L. K. & Scott, J. D. Scar/WAVE-1, a Wiskott–Aldrich syndrome protein, assembles an actin-associated multi-kinase scaffold. EMBO J.19, 4589–4600 (2000). CASPubMedPubMed Central Google Scholar
Miki, H., Fukuda, M., Nishida, E. & Takenawa, T. Phosphorylation of WAVE downstream of mitogen-activated protein kinase signaling. J. Biol. Chem.274, 27605–27609 (1999). CASPubMed Google Scholar
Theriot, J. A. & Mitchison, T. J. Actin microfilament dynamics in locomoting cells. Nature352, 126–131 (1991). CASPubMed Google Scholar
Pantoloni, D. & Carlier, M.-F. How profilin promotes actin filament assembly in the presence of thymosin β4. Cell75, 1007–1014 (1993). Google Scholar
Yang, C. et al. Profilin enhances Cdc42-induced nucleation of actin polymerization. J. Cell Biol.150, 1001–1012 (2000). CASPubMedPubMed Central Google Scholar
Suetsugu, S., Miki, H. & Takenawa, T. The essential role of profilin in the assembly of actin for microspike formation. EMBO J.17, 6516–6526 (1998). Demonstrates that profilin is important for actin reorganization induced by WASP and WAVE family proteins. CASPubMedPubMed Central Google Scholar
Mimuro, H. et al. Profilin is required for sustaining efficient intra- and intercellular spreading of Shigella flexneri. J. Biol. Chem.275, 28893–28901 (2000). CASPubMed Google Scholar
Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M. F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature401, 613–616 (1999). Reconstitution of actin-based motility from purified proteins without any live organisms. CASPubMed Google Scholar
Welch, M. D., Iwamatsu, A. & Mitchison, T. J. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature385, 265–269 (1997). CASPubMed Google Scholar
Suzuki, T., Miki, H., Takenawa, T. & Sasakawa, C. Neural Wiskott–Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri. EMBO J.17, 2767–2776 (1998). CASPubMedPubMed Central Google Scholar
Egile, C. et al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol.146, 1319–1332 (1999). CASPubMedPubMed Central Google Scholar
Cameron, L. A., Svitkina, T. M., Vignjevic, D., Theriot, J. A. & Borisy, G. G. Dendritic organization of actin comet tails. Curr. Biol.11, 130–135 (2001). CASPubMed Google Scholar
Kalman, D. et al. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nature Cell Biol.1, 389–391 (1999). CASPubMed Google Scholar
Shi, J., Scita, G. & Casanova, J. E. WAVE2 signaling mediates invasion of polarized epithelial cells by Salmonella typhimurium. J. Biol. Chem.280, 29849–29855 (2005). CASPubMed Google Scholar
Banzai, Y., Miki, H., Yamaguchi, H. & Takenawa, T. Essential role of neural Wiskott–Aldrich syndrome protein in neurite extension in PC12 cells and rat hippocampal primary culture cells. J. Biol. Chem.275, 11987–11992 (2000). CASPubMed Google Scholar
Strasser, G. A., Rahim, N. A., VanderWaal, K. E., Gertler, F. B. & Lanier, L. M. Arp2/3 is a negative regulator of growth cone translocation. Neuron43, 81–94 (2004). CASPubMed Google Scholar
Kakimoto, T., Katoh, H. & Negishi, M. Regulation of neuronal morphology by Toca-1, an F-BAR/EFC protein that induces plasma membrane invagination. J. Biol. Chem.281, 29042–29053 (2006). CASPubMed Google Scholar
Wong, K. et al. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell107, 209–221 (2001). CASPubMed Google Scholar
Fujita, H., Katoh, H., Ishikawa, Y., Mori, K. & Negishi, M. Rapostlin is a novel effector of Rnd2 GTPase inducing neurite branching. J. Biol. Chem.277, 45428–45434 (2002). CASPubMed Google Scholar
Kawano, Y. et al. CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation. Mol. Cell. Biol.25, 9920–9935 (2005). CASPubMedPubMed Central Google Scholar
Irie, F. & Yamaguchi, Y. EphB receptors regulate dendritic spine development via intersectin, Cdc42 and N-WASP. Nature Neurosci.5, 1117–1118 (2002). CASPubMed Google Scholar
Udo, H. et al. Serotonin-induced regulation of the actin network for learning-related synaptic growth requires Cdc42, N-WASP, and PAK in Aplysia sensory neurons. Neuron45, 887–901 (2005). CASPubMed Google Scholar