The RSK family of kinases: emerging roles in cellular signalling (original) (raw)
Roberts, P. J. & Der, C. J. Targeting the Raf–MEK–ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene26, 3291–3310 (2007). ArticleCASPubMed Google Scholar
Roux, P. P. & Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev.68, 320–344 (2004). ArticleCASPubMedPubMed Central Google Scholar
Carriere, A., Ray, H., Blenis, J. & Roux, P. P. The RSK factors of activating the Ras/MAPK signaling cascade. Front. Biosci.13, 4258–4275 (2008). ArticleCASPubMed Google Scholar
Jones, S. W., Erikson, E., Blenis, J., Maller, J. L. & Erikson, R. L. A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are each similar to distinct protein kinases. Proc. Natl Acad. Sci. USA85, 3377–3381 (1988). Reported the compound nature of the kinase RSK for the first time and showed that RSK contains two apparent kinase domains, each similar to distinct protein kinases. It also reported that RSK has homology to other members of the AGC family of protein kinases. ArticleCASPubMedPubMed Central Google Scholar
Chen, R. H., Sarnecki, C. & Blenis, J. Nuclear localization and regulation of _erk_- and _rsk_-encoded protein kinases. Mol. Cell. Biol.12, 915–927 (1992). Demonstrated that ERK and RSK accumulate in the nucleus following growth-factor-dependent activation. It provided evidence for how signalling originating from the cell surface is transmitted into the nucleus to regulate agonist-dependent changes in nuclear function, such as induction of immediate-early gene expression. CASPubMedPubMed Central Google Scholar
Deak, M., Clifton, A. D., Lucocq, L. M. & Alessi, D. R. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J.17, 4426–4441 (1998). ArticleCASPubMedPubMed Central Google Scholar
Pierrat, B., Correia, J. S., Mary, J. L., Tomas-Zuber, M. & Lesslauer, W. RSK-B, a novel ribosomal S6 kinase family member, is a CREB kinase under dominant control of p38α mitogen-activated protein kinase (p38αMAPK). J. Biol. Chem.273, 29661–29671 (1998). ArticleCASPubMed Google Scholar
Blenis, J. & Erikson, R. L. Phosphorylation of the ribosomal protein S6 is elevated in cells transformed by a variety of tumor viruses. J. Virol.50, 966–969 (1984). ArticleCASPubMedPubMed Central Google Scholar
Nielsen, P. J., Thomas, G. & Maller, J. L. Increased phosphorylation of ribosomal protein S6 during meiotic maturation of Xenopus oocytes. Proc. NatlAcad. Sci. USA79, 2937–2941 (1982). ArticleCAS Google Scholar
Erikson, E. & Maller, J. L. A protein kinase from Xenopus eggs specific for ribosomal protein S6. Proc. Natl Acad. Sci. USA82, 742–746 (1985). ArticleCASPubMedPubMed Central Google Scholar
Sturgill, T. W., Ray, L. B., Erikson, E. & Maller, J. L. Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature334, 715–718 (1988). The first demonstration of a protein kinase (RSK) that is phosphorylated and activated downstream of the ERK/MAPK cascade. ArticleCASPubMed Google Scholar
Fingar, D. C. & Blenis, J. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene23, 3151–3171 (2004). ArticleCAS Google Scholar
Blenis, J., Chung, J., Erikson, E., Alcorta, D. A. & Erikson, R. L. Distinct mechanisms for the activation of the RSK kinases/MAP2 kinase/pp90rsk and pp70–S6 kinase signaling systems are indicated by inhibition of protein synthesis. Cell Growth Differ.2, 279–285 (1991). CASPubMed Google Scholar
Chung, J., Kuo, C. J., Crabtree, G. R. & Blenis, J. Rapamycin–FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell69, 1227–1236 (1992). ArticleCASPubMed Google Scholar
Schwab, M. S. et al. p70S6K controls selective mRNA translation during oocyte maturation and early embryogenesis in Xenopus laevis. Mol. Cell. Biol.19, 2485–2494 (1999). ArticleCASPubMedPubMed Central Google Scholar
Roux, P. P. et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J. Biol. Chem.282, 14056–14064 (2007). ArticleCASPubMed Google Scholar
Richards, S. A., Dreisbach, V. C., Murphy, L. O. & Blenis, J. Characterization of regulatory events associated with membrane targeting of p90 ribosomal S6 kinase 1. Mol. Cell. Biol.21, 7470–7480 (2001). ArticleCASPubMedPubMed Central Google Scholar
Murphy, L. O., Smith, S., Chen, R. H., Fingar, D. C. & Blenis, J. Molecular interpretation of ERK signal duration by immediate early gene products. Nature Cell Biol.4, 556–564 (2002). ArticleCASPubMed Google Scholar
Dummler, B. A. et al. Functional characterization of human RSK4, a new 90-kDa ribosomal S6 kinase, reveals constitutive activation in most cell types. J. Biol. Chem.280, 13304–13314 (2005). ArticlePubMedCAS Google Scholar
Zhao, Y., Bjorbaek, C., Weremowicz, S., Morton, C. C. & Moller, D. E. RSK3 encodes a novel pp90rsk isoform with a unique N-terminal sequence: growth factor-stimulated kinase function and nuclear translocation. Mol. Cell. Biol.15, 4353–4363 (1995). ArticleCASPubMedPubMed Central Google Scholar
Zeniou, M., Ding, T., Trivier, E. & Hanauer, A. Expression analysis of RSK gene family members: the RSK2 gene, mutated in Coffin–Lowry syndrome, is prominently expressed in brain structures essential for cognitive function and learning. Hum. Mol. Gen.11, 2929–2940 (2002). ArticleCASPubMed Google Scholar
Bjorbaek, C., Zhao, Y. & Moller, D. E. Divergent functional roles for p90rsk kinase domains. J. Biol. Chem.270, 18848–18852 (1995). ArticleCASPubMed Google Scholar
Roux, P. P., Richards, S. A. & Blenis, J. Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol. Cell. Biol.23, 4796–4804 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gavin, A. C., Ni Ainle, A., Chierici, E., Jones, M. & Nebreda, A. R. A p90rsk mutant constitutively interacting with MAP kinase uncouples MAP kinase from p34cdc2/cyclin B activation in Xenopus oocytes. Mol. Biol. Cell10, 2971–2986 (1999). ArticleCASPubMedPubMed Central Google Scholar
Dalby, K. N., Morrice, N., Caudwell, F. B., Avruch, J. & Cohen, P. Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK. J. Biol. Chem.273, 1496–1505 (1998). ArticleCASPubMed Google Scholar
Jensen, C. J. et al. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. J. Biol. Chem.274, 27168–27176 (1999). Provided evidence for the phosphorylation of RSK2 by PDK1, thus extending the findings which implicated PDK1 in the activation of AKT/PKB, PKC and S6K, and suggesting that PDK1 controls several crucial growth factor-activated signal-transduction pathways. ArticleCASPubMed Google Scholar
McManus, E. J. et al. The in vivo role of PtdIns(3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation. EMBO J.23, 2071–2082 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mora, A., Komander, D., van Aalten, D. M. & Alessi, D. R. PDK1, the master regulator of AGC kinase signal transduction. Semin. Cell Dev. Biol.15, 161–170 (2004). ArticleCASPubMed Google Scholar
McCoy, C. E., Campbell, D. G., Deak, M., Bloomberg, G. B. & Arthur, J. S. MSK1 activity is controlled by multiple phosphorylation sites. Biochem. J.387, 507–517 (2005). ArticleCASPubMedPubMed Central Google Scholar
Williams, M. R. et al. The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Curr. Biol.10, 439–448 (2000). ArticleCASPubMed Google Scholar
Frodin, M. et al. A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. EMBO J.21, 5396–5407 (2002). ArticlePubMedPubMed Central Google Scholar
Frodin, M., Jensen, C. J., Merienne, K. & Gammeltoft, S. A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. EMBO J.19, 2924–2934 (2000). ArticleCASPubMedPubMed Central Google Scholar
Richards, S. A., Fu, J., Romanelli, A., Shimamura, A. & Blenis, J. Ribosomal S6 kinase 1 (RSK1) activation requires signals dependent on and independent of the MAP kinase ERK. Curr. Biol.9, 810–820 (1999). ArticleCASPubMed Google Scholar
Sutherland, C., Campbell, D. G. & Cohen, P. Identification of insulin-stimulated protein kinase-1 as the rabbit equivalent of rskmo-2. Identification of two threonines phosphorylated during activation by mitogen-activated protein kinase. Eur. J. Biochem.212, 581–588 (1993). ArticleCASPubMed Google Scholar
Smith, J. A., Poteet-Smith, C. E., Malarkey, K. & Sturgill, T. W. Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. J. Biol. Chem.274, 2893–2898 (1999). ArticleCASPubMed Google Scholar
Zaru, R., Ronkina, N., Gaestel, M., Arthur, J. S. & Watts, C. The MAPK-activated kinase Rsk controls an acute Toll-like receptor signaling response in dendritic cells and is activated through two distinct pathways. Nature Immunol.8, 1227–1235 (2007). Demonstrated that Toll-like receptor-dependent activation of RSK is activated not only by ERK but also by p38 through the intermediates MK2 and MK3. ArticleCAS Google Scholar
Ranganathan, A., Pearson, G. W., Chrestensen, C. A., Sturgill, T. W. & Cobb, M. H. The MAP kinase ERK5 binds to and phosphorylates p90 RSK. Arch. Biochem. Biophys.449, 8–16 (2006). ArticleCASPubMed Google Scholar
Kang, S. et al. FGFR3 activates RSK2 to mediate hematopoietic transformation through tyrosine phosphorylation of RSK2 and activation of the MEK/ERK pathway. Cancer Cell12, 201–214 (2007). The first evidence that RSK2 is phosphorylated on Tyr by FGFR3, which enhances its binding and activation by ERK. ArticleCASPubMedPubMed Central Google Scholar
Wood, K. W., Sarnecki, C., Roberts, T. M. & Blenis, J. ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK. Cell68, 1041–1050 (1992). The first to show that the Ras GTPase mediates signal transmission from several growth factors and tumour promoters to the ERK/MAPK module leading to RSK activation. ArticleCASPubMed Google Scholar
Doehn, U., Gammeltoft, S., Shen, S. H. & Jensen, C. J. p90 ribosomal S6 kinase 2 is associated with and dephosphorylated by protein phosphatase 2Cδ. Biochem. J.382, 425–431 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chaturvedi, D., Poppleton, H. M., Stringfield, T., Barbier, A. & Patel, T. B. Subcellular localization and biological actions of activated RSK1 are determined by its interactions with subunits of cyclic AMP-dependent protein kinase. Mol. Cell. Biol.26, 4586–4600 (2006). ArticleCASPubMedPubMed Central Google Scholar
Leighton, I. A., Dalby, K. N., Caudwell, F. B., Cohen, P. T. & Cohen, P. Comparison of the specificities of p70 S6 kinase and MAPKAP kinase-1 identifies a relatively specific substrate for p70 S6 kinase: the N-terminal kinase domain of MAPKAP kinase-1 is essential for peptide phosphorylation. FEBS Lett.375, 289–293 (1995). ArticleCASPubMed Google Scholar
McManus, M. T. & Sharp, P. A. Gene silencing in mammals by small interfering RNAs. Nature Rev. Genet.3, 737–747 (2002). ArticleCASPubMed Google Scholar
Trivier, E. et al. Mutations in the kinase Rsk-2 associated with Coffin–Lowry syndrome. Nature384, 567–570 (1996). Provides the first direct evidence that abnormalities in the MAPK–RSK signalling pathway cause Coffin–Lowry syndrome. ArticleCASPubMed Google Scholar
Frodin, M. & Gammeltoft, S. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol. Cell. Endocrinol.151, 65–77 (1999). ArticleCASPubMed Google Scholar
De Cesare, D., Jacquot, S., Hanauer, A. & Sassone-Corsi, P. Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proc. Natl Acad. Sci. USA95, 12202–12207 (1998). ArticleCASPubMedPubMed Central Google Scholar
Bruning, J. C. et al. Ribosomal subunit kinase-2 is required for growth factor-stimulated transcription of the c-Fos gene. Proc. Natl Acad. Sci. USA97, 2462–2467 (2000). ArticleCASPubMedPubMed Central Google Scholar
Arthur, J. S. & Cohen, P. MSK1 is required for CREB phosphorylation in response to mitogens in mouse embryonic stem cells. FEBS Lett.482, 44–48 (2000). ArticleCASPubMed Google Scholar
Chen, R. H., Abate, C. & Blenis, J. Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase. Proc. Natl Acad. Sci. USA90, 10952–10956 (1993). ArticleCASPubMedPubMed Central Google Scholar
Wingate, A. D., Campbell, D. G., Peggie, M. & Arthur, J. S. Nur77 is phosphorylated in cells by RSK in response to mitogenic stimulation. Biochem. J.393, 715–724 (2006). ArticleCASPubMedPubMed Central Google Scholar
Nakajima, T. et al. The signal-dependent coactivator CBP is a nuclear target for pp90RSK. Cell86, 465–474 (1996). ArticleCASPubMed Google Scholar
Joel, P. B. et al. pp90rsk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol. Cell. Biol.18, 1978–1984 (1998). ArticleCASPubMedPubMed Central Google Scholar
Wu, J. & Janknecht, R. Regulation of the ETS transcription factor ER81 by the 90-kDa ribosomal S6 kinase 1 and protein kinase A. J. Biol. Chem.277, 42669–42679 (2002). ArticleCASPubMed Google Scholar
Zhao, J., Yuan, X., Frodin, M. & Grummt, I. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol. Cell11, 405–413 (2003). ArticleCASPubMed Google Scholar
Wu, M. et al. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev.14, 301–312 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sutherland, C., Leighton, I. A. & Cohen, P. Inactivation of glycogen synthase kinase-3 β by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem. J.296, 15–19 (1993). ArticleCASPubMedPubMed Central Google Scholar
Diehl, J. A., Cheng, M., Roussel, M. F. & Sherr, C. J. Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev.12, 3499–3511 (1998). ArticleCASPubMedPubMed Central Google Scholar
Nikolakaki, E., Coffer, P. J., Hemelsoet, R., Woodgett, J. R. & Defize, L. H. Glycogen synthase kinase 3 phosphorylates Jun family members in vitro and negatively regulates their transactivating potential in intact cells. Oncogene8, 833–840 (1993). CASPubMed Google Scholar
Zhu, J., Blenis, J. & Yuan, J. Activation of PI3K/Akt and MAPK pathways regulates Myc-mediated transcription by phosphorylating and promoting the degradation of Mad1. Proc. Natl Acad. Sci. USA105, 6584–6589 (2008). ArticleCASPubMedPubMed Central Google Scholar
Holland, E. C., Sonenberg, N., Pandolfi, P. P. & Thomas, G. Signaling control of mRNA translation in cancer pathogenesis. Oncogene23, 3138–3144 (2004). ArticleCASPubMed Google Scholar
Angenstein, F., Greenough, W. T. & Weiler, I. J. Metabotropic glutamate receptor-initiated translocation of protein kinase p90rsk to polyribosomes: a possible factor regulating synaptic protein synthesis. Proc. Natl Acad. Sci. USA95, 15078–15083 (1998). ArticleCASPubMedPubMed Central Google Scholar
Roux, P. P., Ballif, B. A., Anjum, R., Gygi, S. P. & Blenis, J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl Acad. Sci. USA101, 13489–13494 (2004). Provides the first evidence for crosstalk between the Ras–MAPK–RSK pathway and the mTOR pathway via RSK-mediated phosphorylation and inactivation of TSC2. This paper also provides an example of signals from the PI3K pathway (via AKT/PKB) and the Ras pathway (via RSK) converging on a single target (TSC2), to more potently suppress its function via phosphorylation of distinct sites. ArticleCASPubMedPubMed Central Google Scholar
Carrière, A. et al. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr. Biol. 21 Aug 2008 (doi: 10.1016/j.cub.2008.07.078). ArticlePubMedCAS Google Scholar
Shahbazian, D. et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J.25, 2781–2791 (2006). ArticleCASPubMedPubMed Central Google Scholar
Rozen, F. et al. Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol. Cell. Biol.10, 1134–1144 (1990). CASPubMedPubMed Central Google Scholar
Holz, M. K., Ballif, B. A., Gygi, S. P. & Blenis, J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell123, 569–580 (2005). ArticleCASPubMed Google Scholar
Etchison, D., Milburn, S. C., Edery, I., Sonenberg, N. & Hershey, J. W. Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J. Biol. Chem.257, 14806–14810 (1982). ArticleCASPubMed Google Scholar
Raught, B. et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J.23, 1761–1769 (2004). ArticleCASPubMedPubMed Central Google Scholar
Pende, M. et al. S6K1−/−/S6K2−/− mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol. Cell. Biol.24, 3112–3124 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cohen, P. & Frame, S. The renaissance of GSK3. Nature Rev. Mol. Cell Biol.2, 769–776 (2001). ArticleCAS Google Scholar
Ballif, B. A. & Blenis, J. Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)–MAPK cell survival signals. Cell Growth Differ.12, 397–408 (2001). CASPubMed Google Scholar
Shimamura, A., Ballif, B. A., Richards, S. A. & Blenis, J. Rsk1 mediates a MEK–MAP kinase cell survival signal. Curr. Biol.10, 127–135 (2000). ArticleCASPubMed Google Scholar
Bonni, A. et al. Cell survival promoted by the Ras–MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science286, 1358–1362 (1999). ArticleCASPubMed Google Scholar
Tan, Y., Ruan, H., Demeter, M. R. & Comb, M. J. p90RSK blocks Bad-mediated cell death via a protein kinase C-dependent pathway. J. Biol. Chem.274, 34859–34867 (1999). References 78–80 show how the PI3K pathway (via AKT/PKB) and the Ras pathway (via RSK) converge on a single target, the BH3-only protein BAD, to more potently suppress its pro-apoptotic function via phosphorylation of distinct sites. ArticleCASPubMed Google Scholar
Anjum, R., Roux., P. P., Ballif, B. A., Gygi, S. P. & Blenis, J. The tumor suppressor DAP kinase is a target of RSK-mediated survival signaling. Curr. Biol.15, 1762–1767 (2005). ArticleCASPubMed Google Scholar
Buck, M., Poli, V., Hunter, T. & Chojkier, M. C/EBPβ phosphorylation by RSK creates a functional XEXD caspase inhibitory box critical for cell survival. Mol. Cell8, 807–816 (2001). ArticleCASPubMed Google Scholar
Ginty, D. D., Bonni, A. & Greenberg, M. E. Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell77, 713–725 (1994). ArticlePubMed Google Scholar
Xing, J., Ginty, D. D. & Greenberg, M. E. Coupling of the RAS–MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science273, 959–963 (1996). ArticleCASPubMed Google Scholar
Ghoda, L., Lin, X. & Greene, W. C. The 90-kDa ribosomal S6 kinase (pp90rsk) phosphorylates the N-terminal regulatory domain of IκBα and stimulates its degradation in vitro. J. Biol. Chem.272, 21281–21288 (1997). ArticleCASPubMed Google Scholar
Fujita, N., Sato, S. & Tsuruo, T. Phosphorylation of p27Kip1 at threonine 198 by p90 ribosomal protein S6 kinases promotes its binding to 14-3-3 and cytoplasmic localization. J. Biol. Chem.278, 49254–49260 (2003). ArticleCASPubMed Google Scholar
Nebreda, A. R. & Ferby, I. Regulation of the meiotic cell cycle in oocytes. Curr. Opin. Cell Biol12, 666–675 (2000). ArticleCASPubMed Google Scholar
Palmer, A., Gavin, A. C. & Nebreda, A. R. A link between MAP kinase and p34cdc2/cyclin B during oocyte maturation: p90rsk phosphorylates and inactivates the p34cdc2 inhibitory kinase Myt1. EMBO J.17, 5037–5047 (1998). The identification of the first downstream kinase target of RSK, MYT1, extending the ERK cascade and providing a direct link to the cell-cycle machinery. ArticleCASPubMedPubMed Central Google Scholar
Bhatt, R. R. & Ferrell, J. E. Jr. The protein kinase p90 rsk as an essential mediator of cytostatic factor activity. Science286, 1362–1365 (1999). ArticleCASPubMed Google Scholar
Gross, S. D., Schwab, M. S., Lewellyn, A. L. & Maller, J. L. Induction of metaphase arrest in cleaving Xenopus embryos by the protein kinase p90Rsk. Science286, 1365–1367 (1999). ArticleCASPubMed Google Scholar
Schwab, M. S. et al. Bub1 is activated by the protein kinase p90Rsk during Xenopus oocyte maturation. Curr. Biol.11, 141–150 (2001). ArticleCASPubMed Google Scholar
Inoue, D., Ohe, M., Kanemori, Y., Nobui, T. & Sagata, N. A direct link of the Mos–MAPK pathway to Erp1/Emi2 in meiotic arrest of Xenopus laevis eggs. Nature446, 1100–1104 (2007). ArticleCASPubMed Google Scholar
Nishiyama, T., Ohsumi, K. & Kishimoto, T. Phosphorylation of Erp1 by p90rsk is required for cytostatic factor arrest in Xenopus laevis eggs. Nature446, 1096–1099 (2007). ArticleCASPubMed Google Scholar
Woo, M. S., Ohta, Y., Rabinovitz, I., Stossel, T. P. & Blenis, J. Ribosomal S6 kinase (RSK) regulates phosphorylation of filamin A on an important regulatory site. Mol. Cell. Biol.24, 3025–3035 (2004). ArticleCASPubMedPubMed Central Google Scholar
Wong, E. V., Schaefer, A. W., Landreth, G. & Lemmon, V. Involvement of p90rsk in neurite outgrowth mediated by the cell adhesion molecule L1. J. Biol. Chem.271, 18217–18223 (1996). ArticleCASPubMed Google Scholar
Yoon, S. O. et al. Ran-binding protein 3 phosphorylation links the Ras and PI3-kinase pathways to nucleocytoplasmic transport. Mol. Cell29, 362–375 (2008). ArticleCASPubMedPubMed Central Google Scholar
Song, T. et al. p90 RSK-1 associates with and inhibits neuronal nitric oxide synthase. Biochem. J.401, 391–398 (2007). ArticleCASPubMed Google Scholar
Takahashi, E. et al. p90RSK is a serum-stimulated Na+/H+ exchanger isoform-1 kinase. Regulatory phosphorylation of serine 703 of Na+/H+ exchanger isoform-1. J. Biol. Chem.274, 20206–20214 (1999). ArticleCASPubMed Google Scholar
Geraghty, K. M. et al. Regulation of multisite phosphorylation and 14-3-3 binding of AS160 in response to IGF-1, EGF, PMA and AICAR. Biochem. J.407, 231–241 (2007). ArticleCASPubMedPubMed Central Google Scholar
Silverman, E., Frodin, M., Gammeltoft, S. & Maller, J. L. Activation of p90 Rsk1 is sufficient for differentiation of PC12 cells. Mol. Cell. Biol.24, 10573–10583 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bignone, P. A. et al. RPS6KA2, a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer. Oncogene26, 683–700 (2007). ArticleCASPubMed Google Scholar
Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature428, 431–437 (2004). ArticleCASPubMed Google Scholar
Thakur, A. et al. Aberrant expression of X-linked genes RbAp46, Rsk4, and Cldn2 in breast cancer. Mol. Cancer Res.5, 171–181 (2007). ArticleCASPubMed Google Scholar
Myers, A. P., Corson, L. B., Rossant, J. & Baker, J. C. Characterization of mouse Rsk4 as an inhibitor of fibroblast growth factor-RAS-extracellular signal-regulated kinase signaling. Mol. Cell. Biol.24, 4255–4266 (2004). ArticleCASPubMedPubMed Central Google Scholar
Smith, J. A. et al. Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer research65, 1027–1034 (2005). ArticleCASPubMed Google Scholar
Clark, D. E. et al. The serine/threonine protein kinase, p90 ribosomal S6 kinase, is an important regulator of prostate cancer cell proliferation. Cancer Res.65, 3108–3116 (2005). ArticleCASPubMed Google Scholar
Cohen, M. S., Zhang, C., Shokat, K. M. & Taunton, J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science308, 1318–1321 (2005). ArticleCASPubMedPubMed Central Google Scholar
Sapkota, G. P. et al. BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms in vitro and in vivo. Biochem. J.401, 29–38 (2007). ArticleCASPubMed Google Scholar
Bain, J. et al. The selectivity of protein kinase inhibitors: a further update. Biochem. J.408, 297–315 (2007). Comparative characterization of newly identified RSK inhibitors first described in references 106–108. ArticleCASPubMedPubMed Central Google Scholar
Dumont, J., Umbhauer, M., Rassinier, P., Hanauer, A. & Verlhac, M. H. p90Rsk is not involved in cytostatic factor arrest in mouse oocytes. J. Cell Biol.169, 227–231 (2005). ArticleCASPubMedPubMed Central Google Scholar
Dufresne, S. D. et al. Altered extracellular signal-regulated kinase signaling and glycogen metabolism in skeletal muscle from p90 ribosomal S6 kinase 2 knockout mice. Mol. Cell. Biol.21, 81–87 (2001). UsingRsk2-knockout mice, this study shows that RSK2 probably has a major role in feedback inhibition of the ERK pathway in skeletal muscle. ArticleCASPubMedPubMed Central Google Scholar
Poirier, R. et al. Deletion of the Coffin–Lowry syndrome gene Rsk2 in mice is associated with impaired spatial learning and reduced control of exploratory behavior. Behav. Genet.37, 31–50 (2007). ArticleCASPubMed Google Scholar
El-Haschimi, K. et al. Insulin resistance and lipodystrophy in mice lacking ribosomal S6 kinase 2. Diabetes52, 1340–1346 (2003). ArticleCASPubMed Google Scholar
Putz, G., Bertolucci, F., Raabe, T., Zars, T. & Heisenberg, M. The S6KII (rsk) gene of Drosophila melanogaster differentially affects an operant and a classical learning task. J. Neurosci.24, 9745–9751 (2004). ArticleCASPubMedPubMed Central Google Scholar
Tomas-Zuber, M., Mary, J. L., Lamour, F., Bur, D. & Lesslauer, W. C-terminal elements control location, activation threshold, and p38 docking of ribosomal S6 kinase B (RSKB). J. Biol. Chem.276, 5892–5899 (2001). ArticleCASPubMed Google Scholar
Wiggin, G. R. et al. MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol. Cell. Biol.22, 2871–2881 (2002). ArticleCASPubMedPubMed Central Google Scholar
Soloaga, A. et al. MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J.22, 2788–2797 (2003). ArticleCASPubMedPubMed Central Google Scholar
Arthur, J. S. et al. Mitogen- and stress-activated protein kinase 1 mediates cAMP response element-binding protein phosphorylation and activation by neurotrophins. J. Neurosci.24, 4324–4332 (2004). ArticleCASPubMedPubMed Central Google Scholar
Schuck, S., Soloaga, A., Schratt, G., Arthur, J. S. & Nordheim, A. The kinase MSK1 is required for induction of c-fos by lysophosphatidic acid in mouse embryonic stem cells. BMC Mol. Biol.4, 6 (2003). ArticlePubMedPubMed Central Google Scholar
Yntema, H. G. et al. A novel ribosomal S6-kinase (RSK4; RPS6KA6) is commonly deleted in patients with complex X-linked mental retardation. Genomics62, 332–343 (1999). ArticleCASPubMed Google Scholar
Dimitri, C. A., Dowdle, W., MacKeigan, J. P., Blenis, J. & Murphy, L. O. Spatially separate docking sites on ERK2 regulate distinct signaling events in vivo. Curr. Biol.15, 1319–1324 (2005). ArticleCASPubMed Google Scholar